E-training Program on Energy Efficiency in Buildings in Zambia & Mauritius

Day 1

copenhagen climate centre environment programme

Global Platform for Urban Climate Neutrality (GPUC) Project

- GPUC serves as a central hub offering cities in emerging economies access to information, technical solutions, capacity building, and support for energy efficiency and climate neutrality efforts.
- The ultimate goal is to accelerate energy efficiency interventions in cities towards long-term carbon neutrality targets.
- Supported by the Ministry of Foreign Affairs of Denmark (DANIDA), the German Energy Agency (DENA) and implemented by UNEP Copenhagen Climate Centre (UNEP-CCC).

Agenda (Day 1)

Session 1: Overview of Building Energy Efficiency & Global Trends (30 min)	
 Need for building energy efficiency interventions in cities & global trends Importance of energy efficiency in Zambia & Mauritius' context 	UNEP CCC EEMO, MIHUD
Session 2: Key Energy Efficiency Strategies for Buildings (40 min)	
 Passive design principles Integration of nature-based solutions to support energy efficiency strategies in buildings Active strategies to improve building energy efficiency 	UNEP CCC
Session 3: Application of EDGE tool in Africa (20 min)	
- Overview of energy-efficient & green building projects in Africa certified by EDGE.	IFC
Session 4: Interactive Discussion (20 min)	
- Challenges and opportunities in Zambia & Mauritius' building energy efficiency sector.	All speakers
Short Quiz	

Session 1: Overview of Building Energy Efficiency & Global Trends

The Role of Building Energy Efficiency

Buildings sector global final energy consumption (2022)

 Global floor area is expanding rapidly, particularly across African countries. This growth, combined with ongoing market development and urbanization, is expected to drive a construction surge, with over 80% of this expansion occurring in cities.

Buildings Energy Consumption in Africa

environment copenhagen climate centre

JN 🏵

Benefits of Energy Efficient Buildings

- **Energy security**: Energy efficiency can reduce the reliance on energy imports and reduce the risks of supply interruptions.
- **Emissions savings**: Energy efficiency reduces GHG emissions, both direct emissions from fossil fuel, and indirect emissions from electricity generation.
- **Public budgets**: Energy efficiency delivers financial benefit to public budgets through decreased expenses.
- **Energy prices**: Energy efficiency can lower energy prices by reducing the need to add new power generation or transmission capacity and by reducing pressure on energy resources.
- **Household savings**: Energy efficiency can enable higher disposable income by lowering energy bills and other households costs
- Asset values: Energy efficiency can increase asset values for homeowners, businesses and utilities.
- Heath and wellbeing: Energy efficiency supports physical and mental health with healthy temperatures, humidity, noise, and air quality.

Global Investments in Energy Efficiency

- Investment in energy efficiency in buildings increased by about 14% to over USD 250 billion in 2022, continuing the rapid growth of the past few years. Maintaining similar progress of at least 11% year-on-year growth could put the sector on track to reach 2030 annual investment levels needed in the NZE Scenario.
- Investment in energy efficiency and clean technologies in the buildings sector has increased, but still falls far short of levels needed in the NZE Scenario

Annual investment in energy efficiency in the buildings sector in the Net Zero Scenario, 2017-2030

Global Energy Efficiency Targets

European Union (EU)

- •Targets:
 - Improve the average energy performance of the national residential building stock by 16% by 2030 (vs. 2020)
 - Reach **20–22% improvement by 2035**, based on national trajectories

India

•Targets:

Industry, Buildings (including appliances), Transport, and Miscellaneous sectors

China

- •Targets 2025:
 - All **new urban buildings** must comply with **green building standards**
 - **50% rooftop PV coverage** required for new public institutions and factories
 - Target 8% renewable energy substitution in urban buildings
 - Renovate 200 million m² of existing buildings for improved energy efficiency
 - Reduce heat loss in urban heating networks by 2%
 - Improve energy efficiency of renovated buildings by 30% (residential) and 20% (public)

Importance of energy efficiency in Zambia & Mauritius' context

Session 2: Key Energy Efficiency Strategies for Buildings

Building Energy Efficiency Strategies

Passive Measures

Design-focused solutions that reduce energy demand without relying on mechanical systems.

High Performance Windows
Natural Ventilation
Design for Daylighting
Cool Roofs
Nature-based Solutions

Active Measures

Technological solutions that use energyefficient systems and equipment.

- •LED Lighting & Smart Controls
- •High-Efficiency Appliances
- •Efficient HVAC Systems
- •Renewable Energy Integration
- •Energy Management Systems (EMS)

High Performance Windows

- High-performance windows block excess solar heat while allowing daylight in hot climates
- Double/triple pane windows with insulating gas between them designed for better insulation
- A low-e coating lowers the U-factor of the window, and some are filtering out 40% to 70% of the heat normally transmitted through insulated window glass while allowing the full daylight
- Internal or external shading devices (e.g. overhangs, blinds, screens, awnings or curtains, and shutters) further reduce solar heat gain.

environment programme

Energy Star Program for Windows

Southern Zone Requirement (mostly cooling)

U-factor	Solar Heat Gain Coefficient (SHGC)	Visible Transmittance (VT)
Windows ≤ 0.32 Skylights ≤ 0.50	Windows ≤ 0.23 Skylights≤ 0.25	No requirement

Source: Energy Star, USA

Natural Ventilation

Natural ventilation allows fresh air to flow through operable windows, skylights, and vents, minimizing the reliance on mechanical systems.

Key considerations

- Orientation: Position openings to catch prevailing winds
- Cross Ventilation: Place windows or vents on opposite walls
- Stack Ventilation: Use vertical shafts, clerestory windows, or high vents to release warm air
- Window Types: Use operable windows like casement, louvered, or jalousie for better airflow
- Shading: Combine with shading devices to prevent unwanted heat gain

Traditional wind tower

Source: Unsplash

Design for Daylighting

Daylighting is the controlled admission of natural light into a building to reduce electric lighting needs and save energy

External considerations:

- Building Orientation
- Surrounding Structures
- Climate and Weather
 Patterns
- Urban and Environmental Context

Internal considerations:

- Building Function
- Space Layout
- Surface Reflectance
- Room Depth and Window
 Placement

Source: UN City

Cool Roofs

Source: Cool Roof Rating Council

Source: Heat Cure

Cool roofs reflect a significant fraction of incoming sunlight and keep the roof surface at a lower temperature than that of regular roofs.

Integration of nature-based solutions to support energy efficiency in buildings

Efficient Lighting

Replace Existing Lamps with LEDs

- LED uses up to 75% less energy than incandescent bulbs.
- LEDs have 10–25 times longer lifespan, reducing maintenance and replacement costs.

Use Occupancy & Daylight Sensors

- Occupancy sensors automatically turn lights on/off based on movement detection in a room or zone.
- Daylight sensors adjust artificial lighting based on the amount of natural daylight available.

Replace existing lamps with LEDs

Use occupancy & daylight sensors

Source: Unsplash

Efficient Equipment

Minimum Energy Performance Standards (MEPS)

 MEPS are regulations that set the minimum acceptable energy efficiency levels for appliances and equipment to reduce energy consumption.

Energy Efficiency Labels

- Efficiency labels provide consumers with information on energy consumption and efficiency rating of appliances.
- Each energy label on an appliance shows how much energy the model would consume under standardized conditions

environment programme

Efficient Heating, Ventilation & Air Conditioning (HVAC) Systems

Integration of Renewables

Source: Unsplash

Source: Solar Power Authority

Source: Inhabitat

Session 3: Application of EDGE Tool Across Africa

