Qatar Cool Overview

Scale
- Largest District cooling provider in Qatar
- 30,000+ Corporate and private customers (individuals)
- 60% Market shares of Qatar District Cooling
- 4.2 billion TR-HR Produced cooling capacity
- 500+ Buildings served
- 5 Cooling Plants

Environmental Highlights
- 3.3 billion KW-HR Electricity savings to date
- 1.8 million Tons CO2 avoided to date
- 6 million + m3 Potable water savings since 2015
- 2,088,770 + m3 TSE utilized in cooling plants
- 34 million (MMBtu) Reduction in natural gas

Higher Operations Profile
- 20 year long-term contracted revenue
- End-to-End process automation
- TSE and smart metering system
- 30-50 years Average plant life cycle
- 99.99% Around the clock reliability and availability

Conserving Energy Today, Preserving our Tomorrow
District Cooling Technology

1. District Cooling Plant
 Produces and supplies chilled water at a temperature of around 4.4 °C

2. Thermal Energy Storage
 Stores cooling to balance peak demand

3. Distribution Network
 Underground insulated pipes, carries the chilled water

4. Energy Transfer Station
 Customer-building interconnections (ETS)

Benefits of District Cooling:
- Up to 50% Reduction of cooling energy consumption through higher energy utilization
- >50% Reduction in CO2 Emissions and hazardous gases
- Frees up Space on rooftops and in basements for increased aesthetics

Future Proof:
- District cooling is a future-proof system that efficiently cools buildings through centralized distribution of chilled water
- By investing in the use of district cooling, cities will become much more energy efficient and significantly reduce greenhouse gas emissions
- District Energy represents a significant opportunity for cities to be more climate resilient, resourceful

Conserving Energy Today, Preserving our Tomorrow
Why District Cooling is Important During Conceptional Design

District Cooling Importance from Design

Space Allocation
District cooling is a utility service that should be included in the master development infrastructure design in terms of **plot allocation** for plants, corridors for **pipe distribution network** and incoming **utility requirements**.

Greater Utilization
Higher utilization of the building areas and significant **reduction of electrical demand** of individual buildings.

Cost Optimization
Include and optimize the district cooling cost components within the **financial model** of the project and **allocate** the **charges** properly.

ESG Goals
Promote the project in the real estate market as an **environmentally friendly project** which will be a major **selling point** as it will contribute to achieving the **ESG goals** of the stakeholders.
Robust Integrated End-to-End Solutions

<table>
<thead>
<tr>
<th>Design</th>
<th>Procure & Build</th>
<th>Operations and Maintenance</th>
<th>Command & Control Centre</th>
<th>Metering & Billing System</th>
<th>Customer Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unique approach to projects</td>
<td>1. In-house dedicated 24/7 plant operators</td>
<td>1. Computerized maintenance management systems for planning, execution and monitoring in real time</td>
<td>1. State-of-the-art command and control centre (CCC) offering a technology platform to remotely monitor and control plant operations 24/7</td>
<td>1. 100% smart meters</td>
<td>1. Customized Customer Solutions (outdoor cooling etc.)</td>
</tr>
<tr>
<td>2. Cost-effective and inhouse design of Energy Transfer Stations (ETS), heat exchangers, plant etc.</td>
<td>2. Rapid deployment capabilities for pipe network construction with in-house project management, and construction teams.</td>
<td>2. Ability to provide emergency solutions (e.g., mobile chillers)</td>
<td>2. The CCC will ensure equipment’s performance, enhance service reliability and ensure compliance with agreed upon thresholds on a real time basis</td>
<td>2. Complete metering and sub-metering solutions</td>
<td>2. Customer Support Centre and Call Centre for handling customer service requests</td>
</tr>
<tr>
<td>3. Deep relationship with key suppliers (e.g., chiller manufacturers)</td>
<td>3. Selective application of AI to enhance performance</td>
<td>3. Potential future demand site response capabilities</td>
<td>3. End-to-end billing solutions</td>
<td>3. Multi-channel payment channels and gateways</td>
<td></td>
</tr>
</tbody>
</table>

Highlights & In-House Capabilities

- Optimum cost approach
- In-House project management
- Automated Maintenance
- Best-in-Class CCC
- Full deployment of smart meters
- Multi-channel customer support

Conserving Energy Today, Preserving our Tomorrow
International Expansion: Key Regions

- **Balance sheet flexibility, access to capital** and **regional know-how** make Qatar Cool well positioned for regional expansion in nearby markets where district cooling is set to play an important societal role.

- Population growth, growing economies and temperature increases, constitute megatrends **accelerating the need for efficient and sustainable cooling at scale**, also in neighbouring GCC countries.

- **Growth** is notably expected to materialize further in the region particularly in **KSA** and **Qatar** and other **MENA countries** such as **Egypt**.
The Preferred Cooling Solution for the Region

The Need for District Cooling - Accelerating Trends

- **Climate Change**
- **Population Growth & Urbanization**
- **Growing Economy**

The Sustainable Cooling Solution

- **Higher Return on Investments**
 - Lower investment costs and operating costs, using 50% less power compared to traditional AC.
 - Lower deterioration of equipment with longer life cycle (30-50 years) vs. traditional ACs (12-15 years).

- **Best Suited for regional Master Development**
 - Cooling is an essential aspect of the regions real estate development given the region’s hot desert climate.
 - Continued investments in infrastructure and increasing real estate density led to a significant and growing amount of aggregated district cooling demand.

- **Sustainable Cooling Infrastructure and Social Role**
 - Lower CO2 and other pollutant emissions.
 - Reduction in power consumption and electricity system peak loads.
 - Reduces overall tariffs for final consumer.

- **Easy Maintenance and Superior Reliability**
 - Outsourcing of cooling operations allow developers to focus on their core business.
 - Around-the-clock and reliable (99.99%) availability.
Qatar Cool’s Commitment Proposition

Contribution to the UN SDG’s
- Affordability and clean energy (7)
- Sustainable cities and communities (11)
- Climate action (13)

Additional Social Impact
- Strong health and safety measures
- Diverse workforce
- Active leader within the community
- CSR events aligned to the following SDG’s

Governance Best Practices
- Comprehensive QHSE and Information Security Risk Management model
- Aligned with ISO certification regime
- Risk based internal audits and external audits
- Management committees & sub-committees (Finance & Audit Committee, Technical Committee and Information security steering committees)

Conserving Energy Today, Preserving our Tomorrow
Environmental Controls

Selected Environmental Achievements and Initiatives Supporting Targets

Electricity
- **Electricity savings to date 3.3bn kWh**
- Encouraging responsible behaviour with employees and customers.
- **DC efficiency of 0.87 kW/ton in 2022**

CO2
- **CO2 savings to date 1.8mn tons**

Water
- **TSE usage in operations (WB) in 2022 98.2%**
- **Water recovery of 70.3% in 2022 (P3)**
- c.81.7% more water savings 2022 vs 2015 through increased TSE usage.
- Currently operating 2 reverse osmosis plants onsite.

Waste & Effluent
- **100% of customers’ bills are sent online**
- **Strict scrap process** promoting re-use and upcycle before recycling/disposal
- Campaigns to eradicate single-use plastic and to minimise waste
- Waste minimization efforts, such as electronic devices donations
- Continuous monitoring of effluent parameters

Refrigerant Leakage
- Installed refrigerant leakage detection system to reduce leakage
- Systematic control to reduce spillage with usage and refrigerant top up monitored

Legend
- Quantifiable Achievements
- Initiatives

Conserving Energy Today, Preserving our Tomorrow
Innovative Efficiency and Reliability

Energy Efficiency
- Qatar Cool has been consistently overachieving the company's targets in terms of electricity usage KW/TR.
- During 2022, the operational efficiency is 13% higher compared to the design benchmark.

Water Efficiency
- Qatar Cool continues to integrate additional water conservation into operations.
- Current water efficiency KPIs indicate an optimal level of water efficiency with reverse osmosis treatment processes contributing to consistently lowering the water consumption / RT vs. industrial design.

The overall energy efficiency is calculated based on the total energy consumed by our customers divided by the energy used in our production process.

During 2013 to 2015, P1 and P2 were still utilizing potable water. The transition of maximum TSE utilization started in 2016.
Energy Reduction & GHG Reduction

Conserving Energy Today, Preserving our Tomorrow
Maximizing the use of Wastewater to Increase Savings and System Efficiency

Use of TSE in operations leads to cost savings, and a more sustainable operational service

Minimizing the use of water from Kahramaa
Fresh domestic water produced using water desalination is distributed throughout the whole country.

By Using TSE
Reverse osmosis polished TSE Water is used to reduce the amount of domestic water in the district cooling operations.

Advantages

Key Advantages of Using TSE Water vs Fresh Domestic Water

- Significant reduction in capital and operational costs.
- Environmentally-friendly solution reducing the demand for fresh domestic water.
- TSE water is c.34x cheaper than the cost of fresh domestic water in Qatar.

Evolution of TSE water percentages used by Qatar Cool

- 2015: 16.7%
- 2016: 58.2%
- 2017: 88.8%
- 2018: 98.4%
- 2019: 98.8%
- 2020: 99.8%
- 2021: 98.4%
- 2022: 98.2%
Conserving Energy Today, Preserving our Tomorrow

Sustainable Management of Natural Resources & Safeguarding Water Ecosystems

- **Reverse Osmosis**
 - Pearl Plants – RO using seawater
 - West Bay Plants – RO using TSE

- **Thermal Storage Energy**
 - The TES tanks allow the storage of cold energy, for peak periods.
 - Allowing significant energy savings

- **Cycle of Concentrate**
 - Saved over 406 million m3 of water
 - Introduced new chemicals to treat the water which increases the CoC

- **Water Efficiency**
 - Irrigation feature
 - Low-flow fixtures
 - TSE
Innovation and Technology

Artificial Intelligence

We have several ongoing projects that look at bringing AI into our operations and our office functions.

One such project is using AI to enhance our efficiency, by improving Delta T, this is achieved by using AI to improve the return water temperature from the ETS's.

Optimization

Energy Transfer Station (ETS) optimization research and testing concluded last year, successfully, it is now being rolled out.

Feasibility study on state-of-the-art control software which will provide continuous system-level optimization of the cooling plants.

Waste Management

We have a circular mindset when it comes to waste. Ensuring the lifecycle is kept in motion, where possible.

- Refrigerant recycling
- Asset repurposing
- Brine repurposing
- CO2 capturing/off-setting
- TSE Utilization

GHGs and Pollution

District cooling by design reduces GHG’s and pollution, further efforts are made by Qatar Cool, such as the green vertical garden on the newest cooling plant, building our cooling plants to LEED certified standards and actively reducing habits and functions to reduce the impact, companywide.
Global Greenhouse Gas Emissions

The GCC region is a significant contributor to global greenhouse gas (GHG) emissions, with a particular focus on the refrigeration gas emissions resulting from air conditioning systems.

The rise in emissions is contributed to the increase in populous, but a warmer climate increases the demand for cooling, often from an unsustainable ‘quick fix’ and unstable source, conventional cooling.

Impact

A warmer climate is expected to both increase the risk of heat-related illnesses and deaths and increase certain types of air pollution.

More severe heat waves, floods, and droughts are expected in a warmer climate. These may reduce crop yields.

Global Warming Potentials

Global warming potential (GWP)

Source: EPA
Barriers and Solutions

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-aggregated development decisions</td>
<td>Designation of appropriate zones</td>
</tr>
<tr>
<td>o Developers of individual buildings make decisions that discourage</td>
<td>o Governments should mandate district cooling in designated areas, where density levels</td>
</tr>
<tr>
<td>consideration of district cooling. Developers are not aware of the</td>
<td>render it appropriate</td>
</tr>
<tr>
<td>advantages of collaborating with its neighbour developers to share a</td>
<td></td>
</tr>
<tr>
<td>district cooling network.</td>
<td>Tariff regulation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cost misperceptions</td>
<td>o Consistent national tariffs for district cooling</td>
</tr>
<tr>
<td>o The way in which developers pass on the cooling costs to end-users,</td>
<td>o Correct allocation of charges, end-users to pay only consumption charges.</td>
</tr>
<tr>
<td>appears artificially expensive, while flattering conventional cooling.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Poor load Planning</td>
<td>Services Standard and Technical Guidelines</td>
</tr>
<tr>
<td>o Poor load planning results from developers over or underestimating</td>
<td>o Defined basic levels of reliability and performance standards</td>
</tr>
<tr>
<td>the load required.</td>
<td>o Setting economic roles</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Non-economic utility pricing</td>
<td></td>
</tr>
<tr>
<td>o Low electricity tariffs in the GCC obscure the economic advantages</td>
<td></td>
</tr>
<tr>
<td>of district cooling. Making district cooling look advantageous in high</td>
<td></td>
</tr>
<tr>
<td>density areas only.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Risk of early investment</td>
<td></td>
</tr>
<tr>
<td>o District cooling required front-loaded investment</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Inconsistency of cost recovery model</td>
<td></td>
</tr>
<tr>
<td>o Inconsistent cost recovery, each project is different and require a</td>
<td></td>
</tr>
<tr>
<td>unique approach to recovering costs</td>
<td></td>
</tr>
</tbody>
</table>
Thank You