Key research created by SMARTER to support residential green finance

Camilo Paez

Research & Data Structuring WP coordination

PhD Research - Teaching Assistant

WP Overview

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Research & Data Structuring for Green Homes & Green Mortgages programs

Reviews, surveys and data analysis

Country	Primary Energy?	loads included	RES requirements	Ref nZEB requirements	Energy consomption or EP class	kWh/m².y house	kWh/m².y multifamily	notes	Heating-cooling demand requirement	Envelope U values required or not
					A+=	\$14-27 -\$10-17 -\$10	\$14-27 -\$10-17 -\$9	B&H North B&H South Rep. Srpska		
Bosnia and Herzegovina	energy need for heating (Qhnd)	only heating			not A+ but A level =	≤23-45 ≤17-29 ≲17	≤24-45 ≤17-29 ≲15	B&H North B&H South Rep. Srpska	only requirement is this Qhnd	•
Bulgaria	PE	ALL		nZEB = class A (PE<95 kWh/m ² .y) +55% off "all but plug" from RES	Final Energy demande for heating and for cooling -> + min, EP class A	<40 kWh/m²/yr		kWh/m².yr A+ <48 A 48<95		-
Czech Republic	maximum EP value based on energy demand	ALL but not plug	15% for houses 10% for multy F		nZEB requirements			limit REFERENCE value Er		YES
Georgia	PE	Heating, domestic hot water, cooling, ventilation But not plug			minimum B scores	167 174 200	142 152 170	Climate 1 Climate 2 Climate 3	Heating 35-35 kWh/m².yr Heating 39-37 kWh/m².yr Heating 42-36 kWh/m².yr	YES
Greece	PE	ALL	YES, 60% of the DHW from solar systems	nZEB=class A (0,33RR < EP<0,50RR)	minimum nZEB national plan conditions	not officialy published	not officialy published			YES
Ireland	PE	ALL but not plug	20% of PE			~45	~40	0,3 of 2005 ref		YES
Italy	PE with RES in design phase	ALL but not plug nor lighting	only in desing phase calulation			90 (+up to 4 units)	70	Reference building methodology		YES
Poland	PE	ALL but not plug nor lighting (for housing)	NO explicit requirement		nZEB requirements	70	65			YES
Romania	energy specific demand	ALL but not plug	min. 10%			110	100	changes in 2020 climte zones		YES
Slovakia	PE but	only heating+DHW							for now (coop) heating +	
SIOVAKIA	FE Dut	ony neading+DHw		Certifier	C	ountry		Prog	gram	
T		Heating, domestic hot water,		1 RoGBC	R	omania		Gree	en Homes	

	Certifier	Country
1	RoGBC	Romania
2	Irish GBC	Ireland
3	Green Council BH	Bosnia & Herzego
4	EnEffect	Bulgaria
5	CZGBC	Czech Republic
6	EEC Georgia	Georgia
7	CRES	Greece
8	GBC Italia	Italy
9	PLGBC	Poland
10	SKGBC	Slovakia
11	Turkeco	Turkey
12	EUEA	Ukraine

10 11

12

	tor now (22020) heating +				
	Program				
	Green Homes				
	Home Performance Index (HPI)				
ovina	Green Homes				
	Green Homes				
	SBToolCZ				
	Green Homes				
	Green Homes				
	GBC Home				
	Green Homes				
	Green Homes				
	CEDBIK, LEED & BREEAM				
	Green Homes				

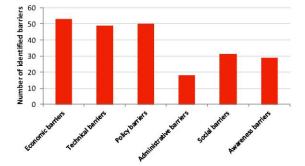
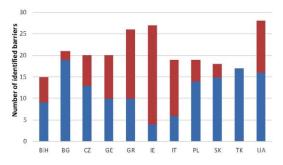



Figure 1. Number of identified main barriers by categories

Common barriers Country-specific barriers

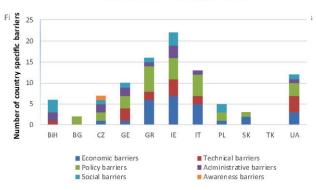


Figure 3. Number of analyzed country-specific barriers by categories

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Research & Data Structuring for Green Homes & Green Mortgages programs

- 1) Review of key research on default risk effect of green homes
- 2) EPB scores as a proxy for more extensive Green certifications \rightarrow for mortgage portfolios
- 3) Assessment of construction **Cost Premiums** of Green Homes
- 4) Country by country identification of legal, social, economic, policy... barriers to green mortgages
- 5) Upgrading plan for existing Green Homes certification programs in line with Level(s)
- 6) Upgrading plan for **alignment with CEN standards** and other relevant national standards
- 7) Assessing **minimum requirements for Green and EPB Certificates** for local programs eligibility and as a minimum level "**Green investment**" tagging
- 8) **Data collection structure** for energy performance and other green criteria meaningful for mortgage portfolios and compatible with e.g. EEFIG's DEEP database and EeMAP's EeDAP database.
- 9) Recommendation and guidelines to Green-Homes valuation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Reference Research on default risk effect of green homes – lead partner Turkeco

A. Focusing on energy savings relating to financial risks/benefits e.g.

- From 1998 key references show "evidence of Rational Market Valuations for Home Energy Efficiency" (Nevin & Watson)
- To "New results and implications for energy efficiency investments" (Mathew, Wallace et.al. 2018 -Berkeley Lab)
- To "Policies to finance energy efficiency: An applied welfare assessment" (McCoy et.al, LSE, 2018)

Such studies

- confirm the direct default risk impacts of energy efficiency and related factors as energy pricing...
- allow to better evaluate the cost-effectiveness of public policies and even
- Invite to consider and value the multiple and non-financial benefits energy efficient buildings.

B. Addressing health, comfort + Other quality/ benefits relating to value & financial risks e.g.

- HEALTHY HOME LOAN PACKAGE studies from ANZ Bank (New Zealand 2019)
- Residential Green Valuation Tools. (Adomatis, Appraisal Institute Chicago 2014)
- Inadequate housing and health: an overview. (Bonnefoy, Paris, 2007)

Higher Real Estate value

mainly supported by certifications

Even with less quantitative data and direct evidence, these studies confirm the default-risk corelation and the **financial and value benefits of healthier and more comfortable homes**

Highlights of Outcomes and Results WP2

Green Homes COST PREMIUMS ?

Table 1 Elements and factors affecting sustainable building cost

Building Life Cycle Cost		RIBA Work		Sustainable Building		
Ъu	inding Life Cycle Cost	Stages	Elements	Green cost premium factors		
t	Preliminary Cost	1. Preparation and Brief				
▲ Initial Cost		2. Design Concept 3. Design	- E4	 Experience of consultants in sustainable building design. Higher consultant fees. Complexity of sustainable design -longer 		
	Design Cost	Development		design time needed.		
		4. Technical Design		 Additional design concerning sustainability. Maturity level of sustainable design. Inconsistency of drawing. Imperfect specification. 		
			E5	 Types of contract use. Appointment of prefabricated manufacturer. 		
		5.Construction	E6	 Lack of proficiency with sustainable technology. Less competition among contractors (dominated by G7). 		
			E1	 Scarcity of materials. Research and development (more testing and code approval required). 		
	Construction Cost		E2	 Lack of information on sustainable materials. Complexity of installation process. Expensive. Difficulties in matching the equipment with the design requirements. 		
			E3	IBS 1. Higher management cost. 2. Higher transportation cost – raw materials to prefabrication site and prefabricated elements to construction site. 3. Assembly cost – special PC installation,		
				frequency of tower crane usage, higher jointing cost. 4. Higher machinery cost. <u>BIM</u> 1. Higher implementation cost. 2. Uncertain ROI recovering.		
			E7	1. Additional values of the coverage provisions.		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

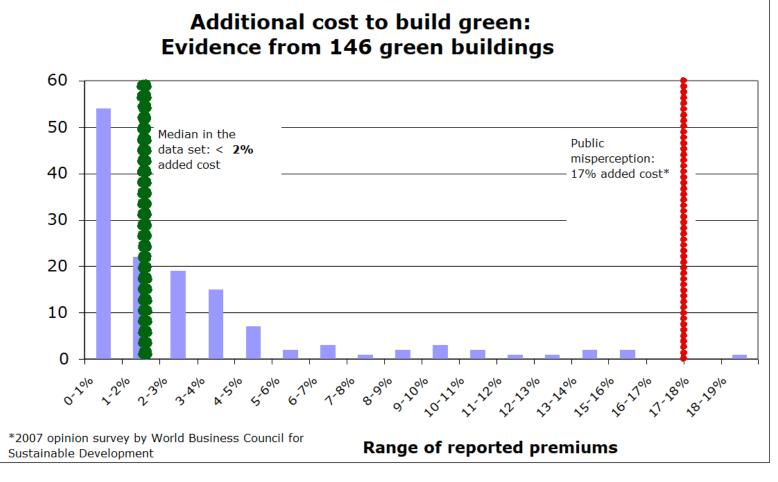
- Average 12% ~ 15% of extra cost considered for a Green-Home certified building.
- Research shows much lower and affordable situation and even no extra-cost (market and building codes evolution...)
- Integrating GH objectives form the beginning allow to limit the potential cost-premiums. (Planning, Design, Studies phases)
- Some green requirements/choices may mean up-front savings.

Legend: E1-sustainable material, E2 -sustainable equipment, E3 -sustainable technology, E4 -sustainable design, E5 -tendering, E6 -contractor's experience, E7 -insurance

Russ N, Hanid M, Kho MY. Literature Review on Green Cost Premium of Sustainable Building Construction. Int J Technol. 2018 Dec 30;9:1715.

Highlights of Outcomes and Results WP2

Green Homes COST PREMIUMS ?



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Good news is that it is more of a **perceived barrier** than a factual

financial issue

Cost of building green: evidence from 146 green buildings. Greg Kats, Capital-E and Good Energies

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Visit project online platform https://c2e2.unepdtu.org/smarter/

& EU CORDIS project page For further reference and public deliverables <u>https://cordis.europa.eu/project/id/847141</u>

Highlights of Outcomes and Results

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 847141.

Green-Homes valuation

Green investment tagging...

Certification programs alignment with Level(s) framework for buildings sustainability assessment...

 \rightarrow Coming up next