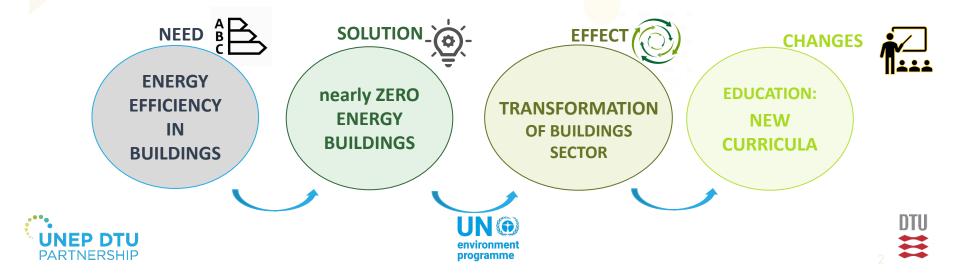
Engineering skills and knowledge Building Sector learning from Europe

Background

PARIS AGREEMENT, Article 2 (a)

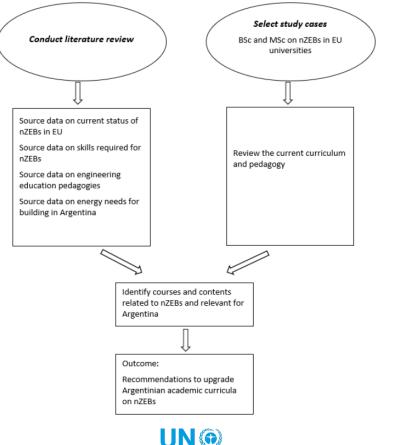

"Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change"

BUILDINGS SECTOR

36<mark>% glob</mark>al energy demand (UNEP, 2017) 39% global CO2 (UNEP, 2017)

77% increase of energy use (IEO, 2019)

Review of engineering education for design and construction of sustainable buildings in Europe and what Argentina can learn


Master thesis, 2nd of June 2020 Author: Victor Jose Torrejon Marina, s182320

<u>Methods</u>

Skill Category	Concept/Skills	Skill Category	Concept/Skills
General concepts	Energy building performance		Climate and Weather
	• Building codes and building regulation		Thermal Comfort
General concepts		Climate and Comfant	Visual Comfort
	Certifications	Climate and Comfort	Indoor Air Quality
	• Orientation and layout of the building		Building Typology
	to reduce/maximize the absorption of		Outdoor Spaces
Sustainable architectural design	heat from the sun and daylight		Thermal Environment
			Internal heat sources
	Space allocation concerning daylight		Passive and Active Design Systems
	Thermal bridges	Heating and cooling system	Dehumidification systems
	Windows		• Dynamic Response of Buildings
	Sun shading devices		Thermal Control Zones
	Windows panes		Centralized (district heating) and
Envolono dosign	Insulation		decentralized systems
Envelope design	Waterproofing	Domestic hot water	• DHW system design
	Airtightness		
	Roof design to provide overhangs/		Physics of Light
	Green roofs	Lighting	Natural Lighting
	Wall greenery		Artificial Lighting
Ventilation system	Natural ventilation		use
	 Mechanical ventilation (Heat and moisture recovery) 		
		- IN VIII ironment	
PARTsource Copenhagen Cleanted	ch Cluster prog	gramme	5

Energy Efficient Buildings: Taught University MSc/BSc Courses

Universities in Denmark, Ireland and the United Kingdom have the highest number of courses on EEB, which is directly linked with a higher implementation on nZEB policies (Tobriska et al., 2018).

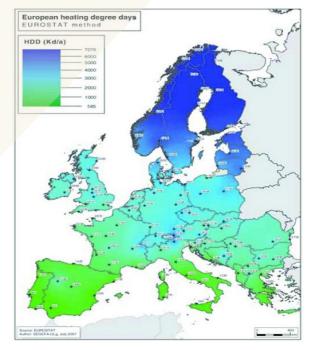
Countries	University Courses/ Programmes of Minimu <mark>m 10</mark> ECTS		
Greece	9		
Italy	12		
Spain	10		
Cyprus	14		
Ireland	20		
UK	20		
Germany	5		
Denmark	29		
Belgium	9		
Romania	17		
Macedonia	4		
	UN 💮		

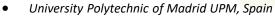
programme

Case Selection Argentinian Context

The Zone I or "very hot climate" is in the northern part and the hot weather is predominant, with less than 390 heating degrees days.

The zone II or "hot climate" has between 390 and 780 heating degree days. In the summer season, the maximum temperature can exceed 30°C, the mean temperature is between of 20°C and 24°C


The zone III or "warm temperate climate" has between 780 and 1170 heating degrees days.


The Zone IV is considered as "cool temperate climate" and has between 1170 and 1950 heating degrees days. **The Zone V** is considered as "cold climate" and has between 1950 and 2730 heating degrees days.

Case Selection Universities in Europe

Spanish climate provides one of the lowest numbers on heating degree days across the European continent. The southern part of the country has a similar climate to

central and northern parts in Argentina as Buenos Aires, La Pampa and La Rioja.

• Technical University of Munich TUM, Germany

Germany has a temperate climate, which it translates to higher number of heating degree days compared with Spain. Its climate matches with parts of Argentina like

Chubut or Andes range zones.

• Denmark Technical University DTU, Denmark

Denmark weather is characterized by long and cold winters, with more heating degree days than meridional zones. This climate relates with Southern areas in Argentina and mountainous areas.

• Chalmers Technical School, Sweden

environmen programme

The Northern part of Sweden possesses a sub-Antarctic climate which is comparable to the most Southern parts in Argentina as Patagonia.

Case Selection Universities in Europe

The selection of different programs is listed below:

- 1. DTU BSc Architectural Engineering
- 2. DTU MSc Eng. Architectural Engineering, MSc. Eng. Sustainable
- 3. UPM BSc Building Engineering
- 4. UPM MSc Technical Innovation in Buildings
- 5. Chalmers BSc Civil and Environmental Engineering
- 6. Chalmers School MSc Structural and Building Technology
- 7. TUM BSc Civil Engineering Energy General,
- 8. TUM MSc in Resource Efficient and Sustainable Building, MSc. Eng. Civil Engineering

nZEB Skills-Case Programs

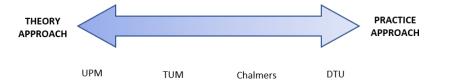
Semester/YearCourse nameMain learning objective4th semesterInstallations IBuilding services5th semesterInstallations IIBuilding services5th semesterRoof and envelopeEnvelope design6th semesterSustainable constructionGeneral teaching on nZEB

Table 6 nZEB academic curricula at UPM BSc Building Engineering

Table 5 nZEB academic curricula at DTU BSc Architectural Engineering

Course name	Main learning objective
11937 Basic Building Design regarding	Building services, energy consumption and
Indoor Environment, Services and Energy 1	general teaching on sustainable construction
11957 Sustainable building design	Building services, energy consumption and general teaching on sustainable construction
11112 Technical Building Services	HVAC systems
11121 Thermal Building Physics	Indoor climate
11141 Energy and indoor environment	Calculation of building energy consumption
11764 Ventilation and Indoor Climate	HVAC systems
31200 Fundamentals of acoustics and noise	Acoustics
control	
62261 HVAC	HVAC systems
62271 Building Energy & heating systems	Energy consumption calculation and heating systems
62371 Sustainable building renewal	Building rehabilitation following nZEE requirements
DRY AACH	PRACTICE
ирм тим с ЕР DTU	Chalmers DTU
	Indoor Environment, Services and Energy 1 11957 Sustainable building design 11112 Technical Building Services 11121 Thermal Building Physics 11141 Energy and indoor environment 11764 Ventilation and Indoor Climate 31200 Fundamentals of acoustics and noise control 62261 HVAC 62271 Building Energy & heating systems 62371 Sustainable building renewal RY ACH UPM TUM C

Table 7 nZEB academic curricula at Chalmers BSc Civil and Environmental Engineering


	Semester	Course name	Main learning objective			
tin	1 st semester	BOM205 - Buildings functions and design,	Building services, energy consumption and			
unię			general teaching on sustainable construction			
7FF	1 st semester	BOM235 - Sound and vibration, basics	Acoustics			
ZEC	3 rd semester	BOM265 Building technology	Indoor climate, building systems, envelope and			
			building physics			
	5 th semester	BOM330 - Building services engineering	HVAC systems			
	Elective, 5 th	ARK675 - Design methodology house	nZEB design			
	semester	building				
	Elective, 5 th	BOM320 - Building physics and building	Indoor comfort design			
	semester	acoustics				
	Elective, 6 th	ARK670 - Refurbishment and maintenance	Upgrade of existing buildings to nZEB			
U.	semester		requirements			
envi	nvironment					
	ramme		10			

nZEB Skills-Case Programs

Summarize of Bachelor programs compliance with nZEB skills

Categories of skill	DTU BSc	TUM BSc	UPM BSc	Chalmers BSc
General concepts	Х	Х	Х	Х
Sustainable Architectural Design	Х	Х		Х
Climate and Comfort	Х	Х	Х	Х
Envelope design	Х	Х	Х	
Ventilation system	Х		Х	Х
Heating and cooling system	Х		Х	Х
Domestic hot water	Х			
Lighting	Х	Х	Х	
Acoustics	Х	Х		Х

nZEB Skills-Case Programs

Summarize of Master's programs compliance with nZEB skills

Category of skills	DTU MSc	TUM MSc	UPM MSc	Chalmers MSc
General concepts	Х	Х	Х	Х
Sustainable Architectural Design	Х	Х	Х	Х
Climate and Comfort	Х	Х	х	Х
Envelope design	Х	Х	х	Х
Ventilation system	Х	Х	х	Х
Heating and cooling system	Х	Х	х	Х
Domestic hot water	Х			
Lighting	Х	Х	Х	Х
Acoustics	Х	Х	х	Х

nZEB Skills-Case Programs- Argentina

National Technological University (UTN)

UTN imparts a graduate degree called MSc Human habitat sustainable development, approved in 2010.

National University of La Plata (UNLP)

The Faculty of Architecture and Urbanism of UNLP offers a two-year master programme dedicated to energy, buildings, cities and landscape

University of Buenos Aires (UBA)

The MSc of Sustainable Architecture and Urbanism

Category of skills	UTN	UNPL	UBA
	MSc	MSc	MSc
General concepts	Х	Х	Х
Sustainable Architectural Design	Х	Х	Х
Climate and Comfort	Х	Х	Х
Envelope design	Х	Х	Х
Ventilation system	Х	Х	
Heating and cooling system	Х	Х	
Domestic hot water			
Lighting	Х	Х	Х
Acoustics			
SHIP	environment programme		

Setting scope- Argentina

- Performed activities
 - A survey and analysis on the **training** existing **programs** available at both the **national** and **provincial levels**, and their respective **contents**.
 - O A characterisation of the **professional profile(s)** in the sector of individual professionals working in EEB.
 - O A status report on the **market situation** (goods, services, value chain) and **stakeholders** (professionals, education and government).
 - O A diagnosis of **existing programs and demand** to **identify** and **evaluate gaps**.
 - **Recommendations** to enhance **professionals' profiles** by creating **educational policies** according to local needs and the state of the art at international level.

Thank You

LOGOS

DTU