Information Campaigns for Residential Energy Conservation

Mark A. Andor*
RWI – Leibniz Institut for Economic Research

Andreas Gerster University of Mannheim

Jörg Peters RWI & University of Passau

April 22, 2021

The paper in brief: What we do

Test the effectiveness of a letter-based information campaign on electricity consumption

- Moreover, we test whether the framing of information matters
- Two Randomized controlled trials with a sample size of 120.000 households, 44.000 households receive letters
- Based on causal forest machine learning techniques, we test the potential of targeting and whether the treatment effect heterogeneity can be explained

The paper in brief: What we find

Site-specific effects are important

- Overall, the average effect size is small and largely unaffected by framing but differs considerably across utilities
- Strong heterogeneity of effects: at one utility, savings are virtually zero, at another 1.4% (+ persistent)
- Treatment effect heterogeneity across utilities cannot be predicted by differences in socioeconomic characteristics: targeting only possible for each site

Motivation

Does Information matter?

- Information is costly and hence people are often not fully informed when making decisions (Stigler 1961)
- Information provision have been shown to affect individual decision making in various contexts, including agriculture, health, and water conservation (Bertrand et al. 2010, Duflo/Saez 2003, Hanna et al. 2014, Ferraro/Price 2013)
- Yet, information interventions differ and relatively little is known about
- "information campaigns": interventions aiming to improve households' knowledge about the consequences of their behavior; in our context, energy-related behaviors and investments

... and for Energy Conservation?

- Growing literature demonstrates that information matters:
 - Social-comparison based home energy reports (e.g. Allcott 2011, Allcott/Rogers 2014)
 - Information based on smart meters (e.g. Jessoe/Rapson 2014, Tiefenbeck et al. 2018)
- Meta-analysis by Delmas et al. (2013): 7.4% average savings, yet effects are lower in studies using rigorous evaluation approaches (see also Andor/Fels 2018)
- Studies on "information campaigns" rely on small samples and find largely different effect sizes: -12% to 8%

No large-scale evaluation of an

information campaign

Our treatment compared to the literature

- If consumers are unaware of effective energy conservation measures (Attari 2010), they might overconsume energy
- Therefore, many governments implement campaigns that inform consumers about effective energy-saving behaviors and investments
- Our intervention: an information letter
 - Lower psychological cost than social-comparison based interventions
 - Low cost in comparison to smart meters
 - Easy to implement

Treatment design, implementation and data

Natural Field Experiments

- Two participating energy utilities:
 - SREG: a large supra-regional utility covering wide parts of both rural and urban Germany
 - REG: a smaller regional utility that operates in the rural north-eastern part of Germany
- Treatment consists of receiving four quarterly letters:
 - Inform about the most promising measures to conserve electricity
- Control group households receive no letters
- Three treatment groups:
 - Economic framing: Euro savings (Econ)
 - Environmental framing: CO2 savings (Env)
 - Economic + environmental framing (EconEnv)

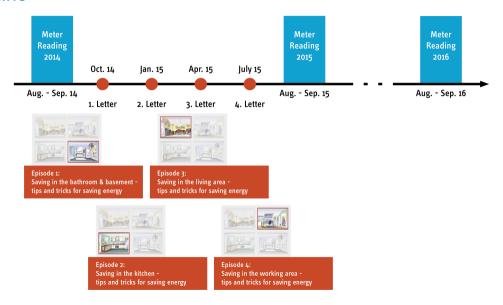
Treatment

- In the design phase, we cooperated with energy efficiency agencies and partners in the marketing sector:
 - Verbraucherzentrale NRW
 - Germany's largest nonprofit organization for consumer protection
 - Energieagentur.NRW
 - A governmental agency to promote energy efficiency
 - Rheingold Institute
 - A private sector company focused on consumer behavior and psychological marketing research
 - brandseven
 - A consultancy focused on marketing services for electricity providers.

Example for the presentation of electricity-saving tips (Translated)

Environmental Treatment

4 Replace old fridge: Is your refrigerator getting old?
A 15-year-old fridge-freezer combination consumes
about 215 kWh/year more than a modern, energy-efficient
appliance, which corresponds to 113 kg CO2/year.



Economic Treatment

4 Replace old fridge: Is your refrigerator getting old?
A 15-year-old fridge-freezer combination consumes
about 215 kWh/year more than a modern, energy-efficient
appliance, which corresponds to 60 euro/year.

Timeline

Randomization

- Stratified on utility and baseline energy consumption

Utility	Sample size	# HH with letters	Type of letter	# HH
SREG	119.110	39.988	Econ	13.330
			Env	13.331
			EconEnv	13.327
REG	8.694	3.999	Econ	2.000
			Env	1.999

Data

- Metered yearly electricity consumption
 - 2013-2014: baseline
 - 2014-2015: treatment period
 - 2015-2016: post-treatment period
- Electricity tariffs
- Sociodemographics (at 1km grid-level) from microm

Descriptives and Balance

		SREG				REG				
	Control	Econ	Env	EconEnv	P-Value	Control	Econ	Env	P-Value	
Baseline cons., in kWh per day	9.05	9.05	9.01	9.07	(0.88)					
Regional utility tariff, in %	0.90	0.90	0.90	0.90	(0.67)					
Green tariff, in %	0.02	0.02	0.02	0.02	(0.27)					
Heating electricity tariff, in $\%$	0.08	0.08	0.08	0.08	(0.94)					
Number of observations	211,233	35,680	35,514	35,665	∑=318,092	12,672	5,377	5,394	∑=23,443	
Number of participants	76,252	12,869	12,841	12,856	∑=114,818	4,559	1,943	1,944	∑=8,446	

Descriptives and Balance

		SREG				REG			
	Control	Econ	Env	EconEnv	P-Value	Control	Econ	Env	P-Value
Baseline cons., in kWh per day	9.05	9.05	9.01	9.07	(0.88)	7.72	7.90	7.86	(0.34)
Regional utility tariff, in %	0.90	0.90	0.90	0.90	(0.67)	0.50	0.51	0.50	(0.72)
Green tariff, in %	0.02	0.02	0.02	0.02	(0.27)	0.47	0.46	0.46	(0.73)
Heating electricity tariff, in $\%$	0.08	0.08	0.08	0.08	(0.94)	0.03	0.03	0.04	(0.43)
Number of observations	211,233	35,680	35,514	35,665	∑=318,092	12,672	5,377	5,394	∑=23,443
Number of participants	76,252	12,869	12,841	12,856	∑=114,818	4,559	1,943	1,944	∑=8,446

Descriptives and Balance

		SREG					REG			
	Control	Econ	Env	EconEnv	P-Value	Control	Econ	Env	P-Value	
Baseline cons., in kWh per day	9.05	9.05	9.01	9.07	(0.88)	7.72	7.90	7.86	(0.34)	
Regional utility tariff, in %	0.90	0.90	0.90	0.90	(0.67)	0.50	0.51	0.50	(0.72)	
Green tariff, in %	0.02	0.02	0.02	0.02	(0.27)	0.47	0.46	0.46	(0.73)	
Heating electricity tariff, in %	0.08	0.08	0.08	0.08	(0.94)	0.03	0.03	0.04	(0.43)	
Regional characteristics at 1km grid-level										
Pop. density, in 1k per km2	0.308	0.316	0.300	0.301	(0.20)	0.052	0.051	0.052	(0.50)	
Unemployment rate, in %	5.2	5.1	5.2	5.1	(0.72)	7.7	7.8	7.7	(0.38)	
Retirees, in %	20.9	20.9	20.9	20.9	(0.86)	20.3	20.4	20.3	(0.91)	
Purch. power, in 1k EUR per hh	43.4	43.3	43.3	43.4	(0.52)	35.0	35.1	35.0	(0.60)	
Foreign household heads, in %	3.9	3.9	3.9	3.9	(0.93)	1.4	1.4	1.4	(0.27)	
Green party voters, in %	6.9	6.9	6.9	6.9	(0.59)	3.2	3.2	3.2	(0.11)	
Number of observations	211,233	35,680	35,514	35,665	∑=318,092	12,672	5,377	5,394	∑=23,443	
Number of participants	76,252	12,869	12,841	12,856	∑=114,818	4,559	1,943	1,944	∑=8,446	

Empirical Strategy and Results

Empirical Strategy

Differences-in-Differences model:

$$Y_{i,t}^{n} = \alpha_i + \beta_t + \sum_{F} \omega_F I L_i^F Post_t + \epsilon_i$$

- $Y_{i,t}^n$: average daily electricity consumption of household i in billing period t (normalized by control group mean)
- α_i , β_t : household *i* and billing period *t* fixed effects, $t \in \{2014, 2015, 2016\}$
- IL_i^F : treatment group dummies, $F \in \{\text{econ, env, econenv}\}$, sometimes analyzed jointly (IL_i)
- Post_t: dummy for post-treatment period

Average Treatment Effects (ATE) by Utility

		REG		SREG			
	(1)	(2)	(3)	(4)	(5)	(6)	
IL	-1.225**			-0.072			
	(0.512)			(0.130)			
Number of obs.	23,294	23,294	23,294	316,571	316,571	316,571	
Number of participants	8,359	8,359	8,359	113,903	113,903	113,903	

Note: Standard errors in parantheses, clustered at the individual level. ***, ***, denote statistical significance at the 1%, 5% and 10% level, respectively.

ATE by Utility, and Year

		REG			SREG	
	(1)	(2)	(3)	(4)	(5)	(6)
IL	-1.225**			-0.072		
	(0.512)			(0.130)		
IL x 2015		-1.361***			-0.061	
		(0.497)			(0.123)	
IL x 2016		-1.073*			-0.085	
		(0.625)			(0.165)	
Number of obs.	23,294	23,294	23,294	316,571	316,571	316,571
Number of participants	8,359	8,359	8,359	113,903	113,903	113,903

Note: Standard errors in parantheses, clustered at the individual level. ***, **, denote statistical significance at the 1%, 5% and 10% level, respectively.

ATE by Utility, Year, and Framing Condition

		REG			SREG	
	(1)	(2)	(3)	(4)	(5)	(6)
IL	-1.225**			-0.072		
	(0.512)			(0.130)		
IL x 2015		-1.361***			-0.061	
		(0.497)			(0.123)	
IL x 2016		-1.073*			-0.085	
		(0.625)			(0.165)	
IL x Econ			-0.815			-0.069
			(0.623)			(0.194)
IL x Env			-1.633**			-0.181
			(0.648)			(0.199)
IL x EconEnv						0.033
						(0.201)
Number of obs.	23,294	23,294	23,294	316,571	316,571	316,571
Number of participants	8,359	8,359	8,359	113,903	113,903	113,903
	IL x 2015 IL x 2016 IL x Econ IL x Env IL x EconEnv Number of obs.	IL -1.225** (0.512) IL x 2015 IL x 2016 IL x Econ IL x Env IL x EconEnv Number of obs. 23,294	IL -1.225** (0.512) IL x 2015 -1.361*** (0.497) IL x 2016 -1.073* (0.625) IL x Econ IL x Env IL x EconEnv Number of obs. 23,294 23,294	(1) (2) (3)	(1) (2) (3) (4) IL -1.225** (0.512) -0.072 (0.130) IL x 2015 -1.361*** (0.497) -1.073* (0.625) IL x Econ -0.815 (0.623) IL x Env -1.633** (0.648) IL x EconEnv -1.633** (0.648)	(1) (2) (3) (4) (5)

Note: Standard errors in parantheses, clustered at the individual level. ***, ***, denote statistical significance at the 1%, 5% and 10% level, respectively.

Heterogeneity analyses based on household characteristics

Heterogeneity in Treatment Effects

- Explorative analysis
- Pools all letters into one treatment dummy, *IL_i*
- Interacts treatment dummy with individual-level info on tariff and baseline consumption
- Further analyses (not shown): Our random causal forest ML analysis shows that treatment effect heterogeneity across utilities cannot be predicted by differences in socioeconomic characteristics

	(1)	REG (2)	(3)	(4)	SREG (5)	(6)
Subgroup	ATE	Std. Err.	n	ATE	Std. Err.	n
Baseline cons. ≤ median Baseline cons. > median		(0.379) (0.946)	11,599 11,695			

Note: Standard errors are clustered at the household level, standard errors in parantheses. ATEs are estimated in the specified subgroup based on Difference-in-Differences models. ***, ***, denote statistical significance at the 1%, 5% and 10% level, respectively. Participants in the above median, top quartile, and top decile groups consume more than 11.3, 14.5, and 19.2 kWh per day (REG) and 13.4, 17.8, and 24.5 kWh (SREG), respectively.

	•	REG		SREG				
	(1)	(2)	(3)	(4)	(5)	(6)		
Subgroup	ATE	Std. Err.	n	ATE	Std. Err.	n		
Baseline cons. \leq median	-0.314	(0.379)	11,599					
Baseline cons. $>$ median	-2.066**	(0.946)	11,695					
Baseline cons. $>$ p75	-3.629**	(1.743)	5,831					
Baseline cons. $>$ p90	-4.282	(3.646)	2,316					

Note: Standard errors are clustered at the household level, standard errors in parantheses. ATEs are estimated in the specified subgroup based on Difference-in-Differences models. ***, ***, denote statistical significance at the 1%, 5% and 10% level, respectively. Participants in the above median, top quartile, and top decile groups consume more than 11.3, 14.5, and 19.2 kWh per day (REG) and 13.4, 17.8, and 24.5 kWh (SREG), respectively.

		REG		SREG			
	(1)	(2)	(3)	(4)	(5)	(6)	
Subgroup	ATE	Std. Err.	n	ATE	Std. Err.	n	
Baseline cons. \leq median	-0.314	(0.379)	11,599	-0.162*	(0.086)	157,817	
Baseline cons. > median	-2.066**	(0.946)	11,695	0.012	(0.243)	158,754	
Baseline cons. $>$ p75	-3.629**	(1.743)	5,831	0.224	(0.447)	79,002	
Baseline cons. $> p90$	-4.282	(3.646)	2,316	0.647	(0.987)	31,330	

Note: Standard errors are clustered at the household level, standard errors in parantheses. ATEs are estimated in the specified subgroup based on Difference-in-Differences models. ***, ***, **, denote statistical significance at the 1%, 5% and 10% level, respectively. Participants in the above median, top quartile, and top decile groups consume more than 11.3, 14.5, and 19.2 kWh per day (REG) and 13.4, 17.8, and 24.5 kWh (SREG), respectively.

		REG			SREG	
	(1)	(2)	(3)	(4)	(5)	(6)
Subgroup	ATE	Std. Err.	n	ATE	Std. Err.	n
Baseline cons. \leq median	-0.314	(0.379)	11,599	-0.162*	(0.086)	157,817
Baseline cons. $>$ median	-2.066**	(0.946)	11,695	0.012	(0.243)	158,754
Baseline cons. $>$ p75	-3.629**	(1.743)	5,831	0.224	(0.447)	79,002
Baseline cons. $>$ p90	-4.282	(3.646)	2,316	0.647	(0.987)	31,330
Green tariff	-0.096	(0.599)	10,981	1.185	(0.961)	5,119
Default tariff	-1.425**	(0.684)	11,493	-0.163	(0.117)	294,907
Heating tariff	-14.609**	(6.947)	820	0.256	(1.309)	16,545

Note: Standard errors are clustered at the household level, standard errors in parantheses. ATEs are estimated in the specified subgroup based on Difference-in-Differences models. ***, ***, **, denote statistical significance at the 1%, 5% and 10% level, respectively. Participants in the above median, top quartile, and top decile groups consume more than 11.3, 14.5, and 19.2 kWh per day (REG) and 13.4, 17.8, and 24.5 kWh (SREG), respectively.

Conclusions

Conclusions

- In contrast to previous studies on retirement savings (Dolls et al. 2018) and social comparison based reports (Allcott2011), our evidence suggests that letter-based information campaigns are largely ineffective when used as a universal policy
- Site-specific factors represent a significant obstacle for bringing an informational intervention to scale
- First, they complicate learning from a pilot study about the effect sizes of the same intervention at another site
- Second, they prevent the derivation of generally applicable targeting strategies that could otherwise allow the cost-effectiveness of informational interventions to improve.

Conclusions

- Contribution to literature on home energy reports (HER): social comparison might not be the crucial element that triggers energy conservation
- Andor et al. 2020: 0.7% for HER in Germany; only about half of the conservation effect that the information letter achieve at REG

Thank you!

Dr. Mark A. Andor

Email: andor@rwi-essen.de