UCL Department of Science, Technology, **Engineering and Public Policy**

Process perspective on home retrofit decisions a qualitative metasynthesis

Yekatherina Bobrova* and George Papachristos**, 22 April 2021 BEHAVE 2020-21, 6th European Conference on Behaviour and Energy Efficiency, 21-23 April 2021

* Department of Science, Technology, Engineering and Public Policy, UCL ** Department of Industrial Engineering & Innovation Sciences, TU Eindhoven The support of the Economic and Social Research Council (ESRC) is gratefully acknowledged

Presentation outline

- 1. Background: you could have something here
- 2. Research aim : you could have something here
- 3. Theoretical lens : you could have something here
- 4. Methodology : you could have something here
- 5. Findings
- 6. Policy implications
- Q&A

References

hing here ethina here

Background Why encourage energy retrofit among EU homeowners?

2°C [1]

~ **third** (2/3 of 41%) [2]

Encourage energy retrofit among homeowners

- reduce operational energy use in dwellings
- mitigate climate change

70% [3]

~ **50%** [4,5,6]

Background Why existing policies are unsuccessful?

Existing policies **focus**:

- drivers/ barriers understanding of retrofit decisions [7]

Limitations of existing policies implications:

- do not allow to understand the temporal sequence of various influences [8]
- retrofit is a process [7]

Research aim

Take a process perspective on homeowner energy retrofit decisions to present a

qualitative metasynthesis of empirical cases visible in the literature.

Theoretical lens

	Pre-retrofit	Retrofit	Post-retrofit
Technical	Physical characteristics of a	Level of retrofit depth \longrightarrow	Physical structure of a hous and its technological potential for low energy use
	Technology available on the market		
			 Energy use in buildings

se

Methodology Qualitative metasynthesis [9]

Methodology Profiles of papers in the synthesis [10-19]

Year	Country	Authors	Source
2019	UK	Martiskainen, M. and Kivimaa, P.	Journal of Cleaner Production
2018	UK	Sunikka-Blank, M., Galvin, R. and Behar, C.	Building Research & Information
2017	Denmark	Bjørneboe, M.G., Svendsen, S. and Heller, A.	Journal of Architectural Engineering
2017	Sweden	Buser, M. and Carlsson, V.	Construction Management and Economics
2017	Denmark, Norway	Fyhn, H. and Baron, N.	Society & Natural Resources
2016	UK	Sunikka-Blank, M. and Galvin, R.	Energy Research & Social Science
2014	Australia	Judson, E.P. and Maller, C.	Building Research & Information
2014	UK	Galvin, R. and Sunikka-Blank, M.	Energy Policy
2014	Denmark	Vlasova, L. and Gram-Hanssen, K.	Building Research & Information
2010	Netherlands	Mlecnik, E.	Open House International

Methodology Retrofit depth in visible cases in the articles

	Pre-retrofit	Retrofit
Technical	Physical characteristics of a → house	Level of retro
	Technology available on the market	
•		••••••
	Maturity of energy retrofit market	 Quality of construction
	Construction industry	Retrofit coord and evaluato
	Homeowner expectations	 Diversity of a opposing energy
Social		Homeowner technologica

Legend: ···· Physical aspects of low-carbon home retrofit are documented above the dotted line Arrow denotes effects

Policy implications

ultimate

- build team expertise
- develop the market for low-carbon technology
- inform homeowner expectations prior to retrofit

engage occupants in the process of a technological solution creation for retrofit

Thank you! Q&A

References

Page 1 of 3

- 1. UN [United Nations], 2015. Paris agreement.
- 2. Rousselot, M., 2018. Energy efficiency trends in buildings: policy brief. European Union.
- 3. Eurostat, 2020. Distribution of population by degree of urbanisation, dwelling type and income group EU-SILC survey.
- 4. Mata, É., Sasic, A., Johnsson, F., 2013. Energy usage and technical potential for energy saving measures in the Swedish residential building stock. *Energy Policy* 55, 404–414.
- 5. Ballarini, I., Corgnati, S.P., Corrado, V., 2014. Use of reference buildings to assess the energy saving potentials of the residential building

- Rosenow, J., Guertler, P., Sorrell, S., Eyre, N., 2018. The remaining potential for energy savings in UK households. *Energy Policy* 121, 542–552.
- Wilson, C., Crane, L., Chryssochoidis, G., 2015. Why do homeowners renovate energy efficiently? Contrasting perspectives and implications for policy. *Energy Res. Soc. Sci.* 7, 12–22.
- 8. Langley, A., 1999. Strategies for theorizing from process data. *Acad. Manag. Rev.* 24, 691–710.

•

))

References

Page 2 of 3

- 9. Sandelowski, M., Barroso, J., 2007. *Handbook for synthesizing qualitative research*. Springler Publishing Company, New York.
- Martiskainen, M., Kivimaa, P., 2019. Role of knowledge and policies as drivers for low-energy housing: case studies from the United Kingdom. *J. Clean. Prod.* 215, 1402–1414
- Sunikka-Blank, M., Galvin, R., Behar, C., 2018. Harnessing social class, taste and gender for more effective policies. *Build. Res. Inf.* 46, 114– 126.
- Bjørneboe, M.G., Svendsen, S., Heller, A., 2017. Using a one-stop-shop concept to guide decisions when single-family houses are

renovated. *J. Archit. Eng.* 23, 05017001–1–05017001–11.

- Buser, M., Carlsson, V., 2017. What you see is not what you get: single-family house renovation and energy retrofit seen through the lens of sociomateriality. *Constr. Manag. Econ.* 35, 276–287
- Fyhn, H., Baron, N., 2017. The nature of decision making in the practice of dwelling: A practice theoretical approach to understanding maintenance and retrofitting of homes in the context of climate change. *Soc. Nat. Resour.* 30, 555–568.

References

Page 3 of 3

- Sunikka-Blank, M., Galvin, R., 2016. Irrational homeowners? How aesthetics and heritage values influence thermal retrofit decisions in the United Kingdom. *Energy Res. Soc. Sci.* 11, 97– 108.
- Judson, E.P., Maller, C., 2014. Housing renovations and energy efficiency: insights from homeowners' practices. *Build. Res. Inf.* 42, 501–511.
- Galvin, R., Sunikka-Blank, M., 2014. The UK homeowner-retrofitter as an innovator in a socio-technical system. *Energy Policy* 74, 655– 662.
- 18. Vlasova, L., Gram-Hanssen, K., 2014.

Incorporating inhabitants' everyday practices into domestic retrofits. *Build. Res. Inf.* 42, 512–524.

 Mlecnik, E., 2010. Adoption of highly energyefficient renovation concepts. *Open House Int.* 35, 39–48.

