EMPOWERING INTERMEDIARIES TO TRAIN AGRO-FOOD COMPANIES IN TACKLING ORGANIZATIONAL, CULTURAL AND BEHAVIOURAL BARRIERS FOR IMPLEMENTING ENERGY EFFICIENCY MEASURES.

Suzanne Brunsting, Kevin Broecks, Laurie Hermans (TNO), co-authored by Fraunhofer ISI and CIRCE

TOWARDS A SUSTAINABLE AGRO-FOOD INDUSTRY. CAPACITY BUILDING PROGRAMS IN ENERGY EFFICIENCY.

This project has received funding from the European Union's H2020 Coordination Support Action under Grant Agreement No.785047.

ENERGY (PROCESS) EFFICIENCY: A NO-BRAINER??

24%

14%

10%

Host is sharing poll results

1. What are the greatest challenges you face for higher heat efficiency? (Multiple choice)

1 - Insufficient workforce competencies (internal and/or external)

2 - There is a lack of advanced market-ready technological solutions 43%

3 - Aging technology 19%

4 - Renewable thermal energy has too many limitations

5 - Management and organizational issues 19%

6 - Lack of financing 57%

7 - Inadequate metering and performance monitoring "infrastructure"

Close

Source: UNIDO IWG Workshop #3: Industrial heat solutions to support operational decarbonisation

PROBLEM, RESEARCH & PRACTICE GAP, QUESTIONS

- **Problem:** Smaller emitters (e.g., agrofood sector) face many challenges in adopting energy efficiency measures due to strong resource constraints, but have received relatively little attention in literature.
- Literature gap: Literature on drivers and barriers (e.g. Cagno *et al.*, 2012; Trainni *et al.*, 2017) for adoption of energy efficiency measures provides little insight into:
 - Organizational, cultural and behavioural barriers to adoption.
 - The role of intermediaries in tackling these barriers at the companies they advice and train.
- Role of intermediaries (energy managers, energy advisors, auditors):
 - Focused on technical and economic drivers/barriers for adoption of energy (process) efficiency measures
 - No attention to strategic advantages of the investment (Multiple Energy Benefits Cooremans et al., 2011)
 See www.mbenefits.eu Final Conference May 11th 2021

Questions:

- What organizational, cultural and behavioural drivers and barriers hamper or stimulate the adoption of energy efficiency measures in companies in the agro-food industry?
- How can training programs capitalize on these drivers and tackle the barriers?
- How can intermediaries be empowered in implementing these training programs?

ORGANIZATIONAL, CULTURAL, BEHAVIOURAL = ?

Eight-step change model

Source: Kotter, John P. (1996). Leading Change. Harvard Business Review Press.

Theory of Basic Values

Source: Schwartz, S. H. (2012). An Overview of the Schwartz Theory of Basic Values. Online Readings in Psychology and Culture, **2**, 1.

Behaviour Change Wheel

Source

Michie, S., van Stralen, M.M. & West, R. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. *Implementation Sci* **6**, 42 (2011).

METHOD

Structured interview – Inventory of EMS actions 3-5 Semi-structured interviews employees (workfloor, management) **Survey** for all employees with culture items (PVQ-21) Training Evaluation **survey** training participants Evaluation **survey** training participants **Structured interview** – Inventory of EMS actions

Literature Review of existing interventions Expert session review (drivers/barriers)

HUMAN-CENTERED DESIGN (WWW.IDEO.ORG)

INTERVENTION EXAMPLE – PRODUCTION LEVEL

> INTERVENTION EXAMPLE — MANAGEMENT LEVEL

Intervention with the ASAP tool: Aligning Sustainability impact Assessment of Purchasing decisions

Simple tool to help debiasing capital investment decisions by (C-level or sub-C level) decision makers

Ultimate aim: Energy efficiency is a standard procurement criterion

ASAP tool

CRITERION	0 POINTS	1 POINTS	2 POINTS
IMPACT ENERGY SAVING (INTERNALLY)	Low	Average	High
AVAILABILITY EE OPTIONS (MARKET)	Hardly	Fair	Good
PROFITABILITY (FINANCIAL)	Low	Average	High
ORGANISATIONAL FEASIBILITY	Low	Average	High
PREVIOUS EXPERIENCE	Not/negative	Neutral	Good/positive

IMPACT

Table 4. Main impacts of the INDUCE project (source: D5.1)

FACTOR	INITIAL IMPACT (OBJECTIVE)	CALCULATED IMPACT ¹⁶
Number of measures on Energy Efficiency	400	490
Annual energy savings in primary energy (GWh/year)	106	554
Costs energy savings (million €/year)	17,4	20
Investments on Energy Efficiency (Million €)	26,5	21,68
CO ₂ emissions avoided (ktCO ₂ /year)	13,5	95

¹⁶ assuming 315 companies would have been involved in total

) CHALLENGES

- Normal duration of CSA project versus normal duration of project in agrofood company (ah, is that project still running?)
- Data collection across four countries is a challenge (sensitive questions and privacy considerations)
- Get trainers out of their comfort zone (i.e., actively adopt insights from social scientific perspective in their training practice)
- Make companies opt for management trainings (more C-level commitment would have helped)
- Acknowledgement that (management) behaviour is a major factor of influence in the energy transition!

MORE INFORMATION

Thank you for your attention!

For more information and project outcomes:

https://www.induce2020.eu/

Suzanne.Brunsting@tno.nl

References

Cagno, E., Worrell, E., Trianni, A., & Pugliese, G. (2012). Dealing with barriers to industrial energy efficiency: an innovative taxonomy. In ECEEE Industrial Summer Study (pp. 1-14).

Cooremans, C. (2011). Make it strategic! Financial investment logic is not enough. Energy Efficiency 4 (4): 473–492.

Trianni, A., Cagno, E., Marchesani, F., & Spallina, G. (2017). Classification of drivers for industrial energy efficiency and their effect on the barriers affecting the investment decision-making process. Energy Efficiency, 10 (1), 199-215.

