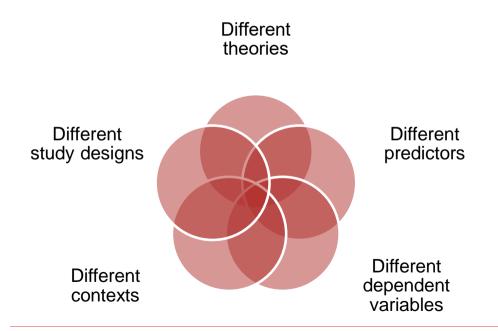

DETERMINANTS OF RESIDENTIAL PHOTOVOLTAIC ADOPTION INTENTION - A META-ANALYSIS

Remote from Leipzig to Copenhagen, 22.04.2021 Emily Schulte

Fabian Scheller, Daniel Sloot, Thomas Bruckner



Institute for Infrastructure and Resource Management Energy Management and Sustainability Prof. Dr. Thomas Bruckner

MOTIVATION

META ANALYSES PROVIDE A MECHANISM TO OBJECTIVELY SYNTHESIZE DATA ACROSS STUDIES

- In 173 studies on residential PV adoption, [1] find 333 predictors
- Single studies are subject to issues related to
 - Statistical power
 - Validity and reliability
 - Contextuality
- → Single studies provide no solid base for conclusions about effects of predictors

UNIVERSITÄT LEIPZIG

OBJECTIVE

REVEAL PATTERNS OF RELATIONSHIPS AMONG PREDICTORS AND RESIDENTIAL PV ADOPTION

- Determine point estimates of relationships between predictors and intention
- Assess the suitability of an (extended) Theory of Planned Behavior framework
- Derive implications to enhance future aggregation of scientific evidence

Methodology

WHAT DID WE DO?

METHODOLOGY

USE MASEM TO SYNTHESIZE AND ANALYZE THE SYSTEMATICALLY SELECTED LITERATURE

Meta-analytic structural equation modeling (MASEM) ^[2, 3, 4]:

- 1. Literature research
- 2. Literature selection
- 3. Code literature
- Pool correlations (Random effect model, inverse variance weighing, REML method)
- 5. Estimate SEMs

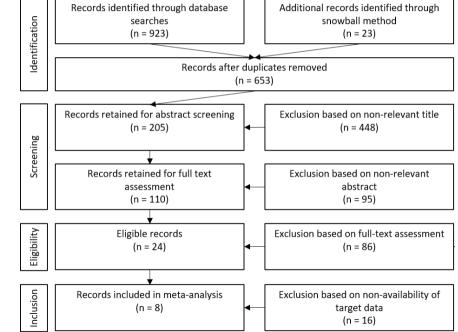


Figure 1: Flow chart describing literature selection. Source: Own illustration

METHODOLOGY

USE MASEM TO SYNTHESIZE AND ANALYZE THE SYSTEMATICALLY SELECTED LITERATURE

Meta-analytic structural equation modeling (MASEM) ^[2, 3, 4]:

- 1. Literature research
- 2. Literature selection
- 3. Code literature
- 4. Pool correlations (Random effect model, inverse variance weighing, REML method)

5. Estimate SEMs

	í A	B	С	D	E	F	G	Н		J	K	L	М
1	no	author	year	country	n	envcon	novseek	bar	ben	sn	gen	edu	inc
2		1 Sun et al.	2020	Taiwan	300	0,631689204	0,75		0,765247931				
3		2 Claudy et al.	2013	Ireland	254			-0,266966639	0,340293929				
4	1	8 Rai and Beck	2015	Texas	522	0,187	0,324		0,349	0,416025147			
5	4	4 Chen	2014	Taiwan	203	0,639736524	0,4						
6	3	5 Arroyo and Carre	2019	Mexico	72	0,046		-0,153			-0,028	0,265	0,442
7	(5 Parkins et al.	2018	Canada	2065	0,048				0,101	-0,009391759	0,011665175	-0,002107285
8		7 Aziz et al.	2017	Malaysia	211	0,354		0,097	0,562	0,397		-0,048	0,142
9	1	8 Wolske et al.	2017	USA	904	0,324442842	0,32439929	-0,116964222	0,530695705	0,384114384			

Figure 2: Input table for correlations between intention and predictors. Source: Own calculations

UNIVERSITÄT

LEIPZIG

Results

POOLED CORRELATION TABLE AND SEM's

POOLED CORRELATION TABLE

	INT	\mathbf{EC}	NS	BA	BE	\mathbf{SN}	GEN	\mathbf{EDU}
EC	.343**							
	(.382), N=7							
\mathbf{NS}	.475**	.445**						
	(.46), N=4	(.187), N=4						
$\mathbf{B}\mathbf{A}$	111	172*	015					
	(.306), N=4	(.397), N=3	(.13), N=1					
\mathbf{BE}	.53**	.693**	.636**	185**				
	(.334), N=5	(.366), N=4	(.458), N=3	(.102), N=3				
\mathbf{SN}	.326**	.283**	.504**	104	.491**			
	(.291), N=4	(.293), N=4	(.752), N=2	(.528), N=2	(.429), N=3			
GEN	01	.049**	0	038	0	059**		
	(.084), N=2	(.082), N=2	(0), N=0	(.463), N=1	(0), N=0	(.086), N=1		
\mathbf{EDU}	.046	.047	0	035	006	.068**	086**	
	(.287), N=3	(.126), N=3	(0), N=0	(.234), N=2	(.27), N=1	(.082), N=2	(.084), N=2	
INC	.183	.15**	0	.002	.085	.037	096**	.194
	(.499), N=3	(.219), N=3	(0), N=0	(.333), N=2	(.687), N=1	(.189), N=2	(.084), N=2	(.508), N=3

Upper number: Pearson's r with significance level (*: p<.1; **: p<.05); Number in brackets: Width of 95% CI; N: Number of studies INT Intention; EC Environmental concern; NS Novelty Seeking; BA Barriers; BE Benefits; SN subjective norm; GEN Gender; EDU Education; INC Income

Figure 3: Pooled correlation table. Source: Own calculations

UNIVERSITÄT LEIPZIG Institute for

POOLED CORRELATION TABLE

DETERMINE POINT ESTIMATES OF RELATIONSHIPS BETWEEN PREDICTORS AND INTENTION

	INT	EC	NS	BA	BE	SN	GEN	EDU		
\mathbf{EC}	.343**									
	(.382), N=7								_	Strongest correlation
\mathbf{NS}	.475**	.445**								between intention and
		(.187), N=4								benefits
BA		172*	015							
BE	(.306), N=4 .53**	(.397), N=3 .693**	(.13), N=1 .636**	185**					-	No correlation between intention and income and
	(.334), N=5	(.366), N=4	(.458), N=3	(.102), N=3						
\mathbf{SN}	.326**	.283**	.504**	104	.491**					barriers
	(.291), N=4	(.293), N=4	(.752), N=2	(.528), N=2	(.429), N=3				_	Benefits strongly correlated
GEN	01	.049**	0	038	0	059**				with environmental
	(.084), N=2	$(.082), N{=}2$	(0), N=0	(.463), N=1	(0), N=0	(.086), N=1				
\mathbf{EDU}	.046	.047	0	035	006	.068**	086**			concern, novelty seeking
	(.287), N=3	(.126), N=3	(0), N=0	(.234), N=2	(.27), N=1	(.082), N=2	(.084), N=2			and subjective norm
INC	.183	.15**	0	.002	.085	.037	096**	.194		
	(.499), N=3	(.219), N=3	(0), N=0	(.333), N=2	(.687), N=1	(.189), N=2	(.084), N=2	(.508), N=3		

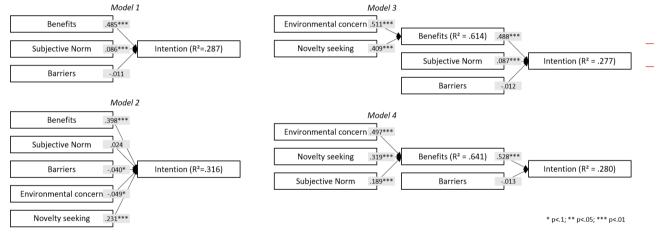

Upper number: Pearson's r with significance level (*: p<.1; **: p<.05); Number in brackets: Width of 95% CI; N: Number of studies

Figure 3: Pooled correlation table. Source: Own calculations

INT Intention; EC Environmental concern; NS Novelty Seeking; BA Barriers; BE Benefits; SN subjective norm; GEN Gender; EDU Education; INC Income

RESULTS OF STRUCTURAL EQUATION MODELLING

ASSESS THE SUITABILITY OF AN (EXTENDED) THEORY OF PLANNED BEHAVIOR FRAMEWORK

- Useful to limited extent
- Suggestion to use a modified version of TPB:
 - attitudes operationalized as benefits
 - attitudes explained by environmental concern, novelty seeking, and subjective norms

	N	Chi ² (LR test model vs. saturated)	df	CFI	TLI	RMSEA, 90% CI	SRMR	AIC	BIC	CD
Model 1	1640	0	0	1.000	1.000	.000 [0]	.000	17,556.435	17,578.044	.287
Model 2	1714	0	0	1.000	1.000	.000 [0]	.000	25,789.611	25,822.290	.316
Model 3	1714	222.595 (p = .000)	4	.910	.797	.179 [.159 – .199]	.048	26,014.206	26,052.332	.618
Model 4	1714	113.798 (p = .000)	4	.964	.920	.127 [.107 – .147]	.039	25,905.409	25,943.535	.641

Figure 4: Results of structural equation modeling. Source: Own calculations

UNIVERSITÄT LEIPZIG

Discussion & Conclusion

PROBLEMS, PLAUSIBILITY AND PROPOSITIONS

PROBLEMS

DUE TO HETEROGENEOUS LITERATURE BODY, SYNTHETIZATION RESULTS ARE LIMITED

- Small study sample
- No consistent use of predictors
- Different contexts _

LEIPZIG

 \rightarrow Limited informative value

PLAUSIBILITY

RELATIONS BETWEEN INCOME, BARRIERS AND INTENTION MUST BE ANALYZED MORE THOROUGHLY

1. Correlation Income – Intention

[7] and [8] both find positive effects of income on intention

- Considerations preceding intentions less concrete?^[9]
- Role of policy schemes? [10, 11]
- Biased samples?

2. Correlation Barriers – Intention

- Smaller than correlation in metaanalyses on pro-environmental behavior ^[3, 4]
- Reasons for outlier can't be analyzed due to missing information

PROPOSITIONS – FOR FUTURE RESEARCH

DERIVE IMPLICATIONS TO ENHANCE FUTURE AGGREGATION OF SCIENTIFIC EVIDENCE

Systematization of research is crucial for more meaningful derivations:

- Use consistent predictors
- Use consistent measures for adoption
- Collect contextual variables
- Comply with reporting standards

PROPOSITIONS – FOR POLICY-MAKERS

- Enhance benefits instead of reducing barriers
- Focus on environmental benefits and innovativeness
- Innovativeness plays particularly large role in regions with low diffusion rates
- Consider tailoring strategies to consumer segments of like-minded people

UNIVERSITÄT LEIPZIG

THANK YOU FOR YOUR ATTENTION!

Emily Schulte

Institute for Infrastructure and Resources Management Chair for Energy Management and Sustainability

Ritterstrasse 26 | 04109 Leipzig T +49 341 97-33528

schulte@wifa.uni-leipzig.de

REFERENCES

[1] M. Alipour, H. Salim, R. A. Stewart, and O. Sahin. Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review. Renewable and Sustainable Energy Reviews, 123:109749, 2020. ISSN 13640321. DOI: 10.1016/j.rser.2020.109749.

[2] D. D. Bergh, H. Aguinis, C. Heavey, D. J. Ketchen, B. K. Boyd, P. Su, C. L. L. Lau, and H. Joo. Using meta-analytic structural equation modeling to advance strategic management research: Guidelines and an empirical illustration via the strategic leadership-performance relationship. Strategic Management Journal, 37(3):477–497, 2016. ISSN 01432095. DOI:10.1002/smj.2338.

[3] S. Bamberg and G. Möser. Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour. Journal of Environmental Psychology, 27(1):14–25, 2007. ISSN 02724944. DOI:10.1016/j.jenvp.2006.12.002.

[4] C. A. Klöckner. A comprehensive model of the psychology of environmental behaviour—A meta-analysis. Global Environmental Change, 23(5):1028–1038, 2013. ISSN 09593780. DOI: 10.1016/j.gloenvcha.2013.05.014.

[5] L. Korcaj, U. J. Hahnel, and H. Spada. Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers. Renewable Energy, 75:407–415, 2015. ISSN 09601481. DOI: 10.1016/j.renene.2014.10.0

[6] M. Engelken, B. R'omer, M. Drescher, and I. Welpe. Why homeowners strive for energy self-supply and how policy makers can influence them. Energy Policy, 117:423–433, 2018. ISSN 03014215. DOI: 10.1016/j.enpol.2018.02.

[7] R. Best, P. J. Burke, and S. Nishitateno. Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia. Australian Jounal of Agricultural and Resource Economics, 63(4):922–939, 2019. ISSN 1364-985X. DOI:10.1111/1467-8489.12319.

[8] I. Jan, W. Ullah, and M. Ashfaq. Social acceptability of solar photovoltaic system in Pakistan: Key determinants and policy implications. Journal of Cleaner Production, 274:123140, 2020. ISSN 09596526. DOI: 10.1016/j.jclepro.2020.123140.

[9] J. W. Arts, R. T. Frambach, and T. H. Bijmolt. Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior. International Journal of Research in Marketing, 28(2):134–144, 2011. ISSN 01678116. DOI:10.1016/j.ijresmar.2010.11.002.

[10] E. O'Shaughnessy, G. Barbose, R. Wiser, S. Forrester, and N. Darghouth. The impact of policies and business models on income equity in rooftop solar adoption. Nature Energy, 2020. DOI: 10.1038/s41560-020-00724-2.

[11] K. S. Wolske. More alike than different: Profiles of high-income and low-income rooftop solar adopters in the United States. Energy Research & Social Science, 63:101399, 2020. ISSN 22146296. DOI: 10.1016/j.erss.2019.101399.