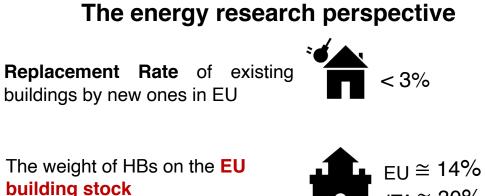
6° European Conference on Behaviour and Energy Efficiency – BEHAVE 2020-2021

HUMAN-DRIVEN ENERGY EFFICIENCY IN HISTORIC BUILDINGS

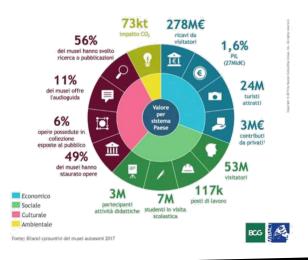

G. Spigliantini^{1*}, M. Schweiker², C. Becchio¹ and S.P. Corgnati¹

¹ TEBE-IEEM Group -Energy department Polytechnic University of Turin ² Institute for Occupational, Social and Environmental Medicine RWTH Aachen University

Genesis of the research

The weight of HBs on the EU building stock

Historic buildings have a crucial role to reach EU 2050 GHG emissions' reduction goals (-80-95%)

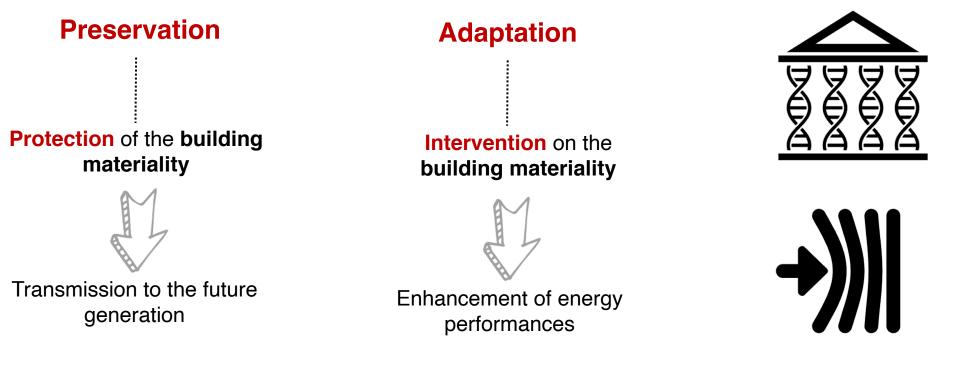

Since most HBs host human activities, there is the necessity to adapt them to our current lifestyle, e.g. ensuring health and comfort of occupants

The preservation sector perspective

In Italy, in 2017, Public Museums revenues from Visitors was 278M€

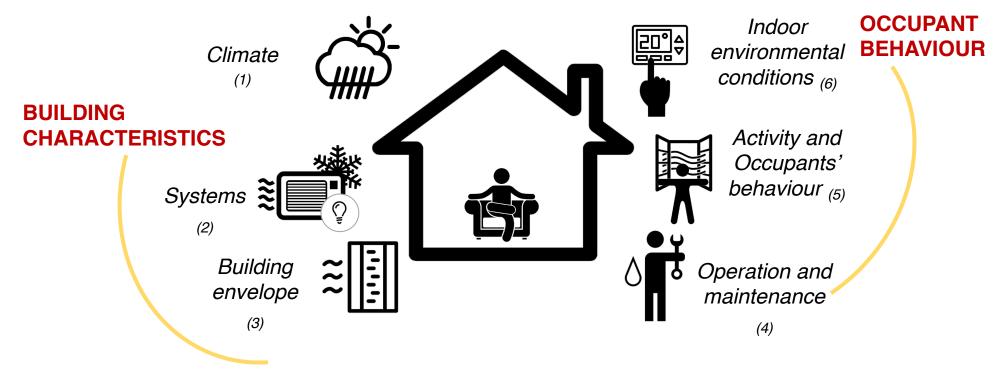
In the same year, their annual expenditure for energy-related costs was 250 M€

In museums, palaces and monuments energy-related costs can represent more than 70% of the annual total balance



Human-driven energy efficiency in historic buildings

The preservation sector and the energy research seems to pursue mutual exclusive objectives


Result: most often energy standards exempt HBs from respecting the prescriptions and this building stock is not retrofitted at all

Occupant Behaviour definition and potential

Can acting on Occupant Behaviour (by engaging occupants) be a valuable energy retrofit measure?

Theoretical framework and research question

Why conceiving occupant engagement as a potential energy retrofit measure

Theoretical framework

* In the specific context of HBs

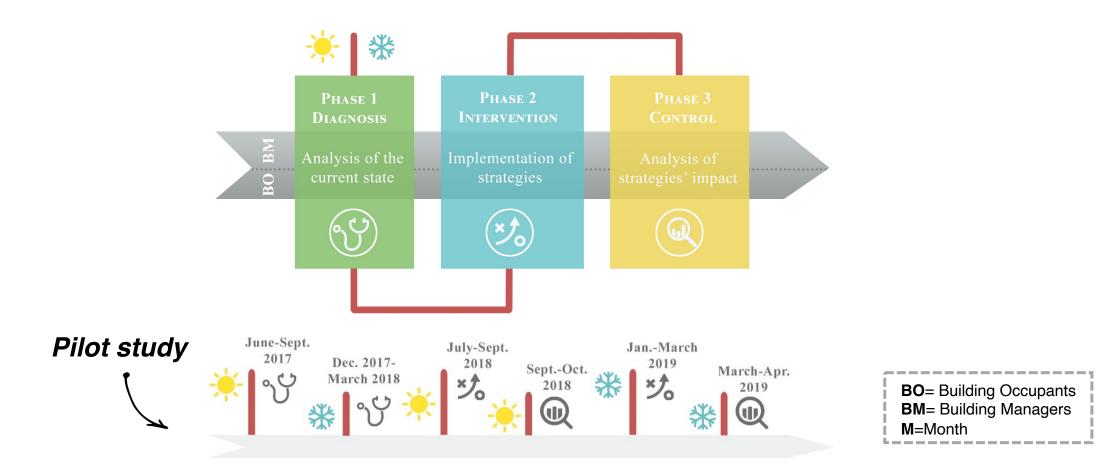
Create a pro-active involvement in reducing energy consumption and avoid energy waste

* **Reduce heritage conservation risks** (e.g. artworks and decorations)

* **Increase social responsibility** towards a conscious preservation of architectural heritage

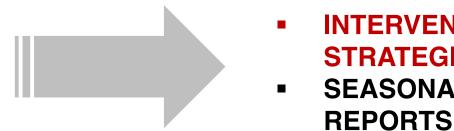
RESEARCH QUESTION

What are the **potentialities of energy saving and indoor environmental conditions' enhancement** by acting only on the way **non-residential historic buildings are operated** by occupants and operators?

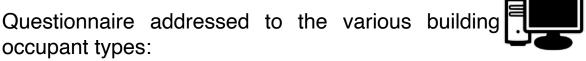


BIOSFERA METHODOLOGY

BUILDING INTELLIGENT OPERATIONAL STRATEGIES FOR ENERGY RETROFIT AIMS


Phase I - Diagnosis Hypothesizing the potential

- Semi-structured interviews
- Acquisition and analysis of energy bills;
- Acquisition and analysis environmental monitoring data.



INTERVENTION **STRATEGIES** SEASONAL

of

- office workers (High Level of Control)
- "staff" and classrooms users (Medium L. of C.)
- museum visitors (Low L. of C.)

occupant types:

Human-driven energy efficiency in historic buildings

Giorgia Spigliantini, PhD, Dr. -Ing.

Ē

E

Phase II - Intervention

Elaborate actions to ameliorate building operation by BMs and Bos

STRATEGIES' OBJECTIVES:

- Lower energy consumptions;
- Respond to occupants' comfort necessities expressed in the questionnaire;
- Solve critical situation related to artworks' conservation.

MEASURES:

- Change of HVAC set-points and schedules
- Change of envelope elements' management

STRATEGIES' OBJECTIVES:

- Educate occupants to take advantage of their control opportunities;
- Engage occupants in lowering the building's energy consumption.

MEASURES:

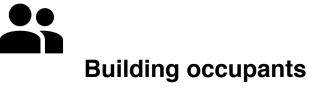
- Newsletters
- HVAC controls' instructions
- Comfort advices
- Reminds

Phase III - Control Define the potential

Two types of results

Energy-related: change in energy consumption and related costs.

• **Occupant-related**: ameliorating comfort and changing behavior.



 Semi-structured interviews about the implementation of strategies;

 Acquisition and analysis of the new energy bills and environmental monitoring data.

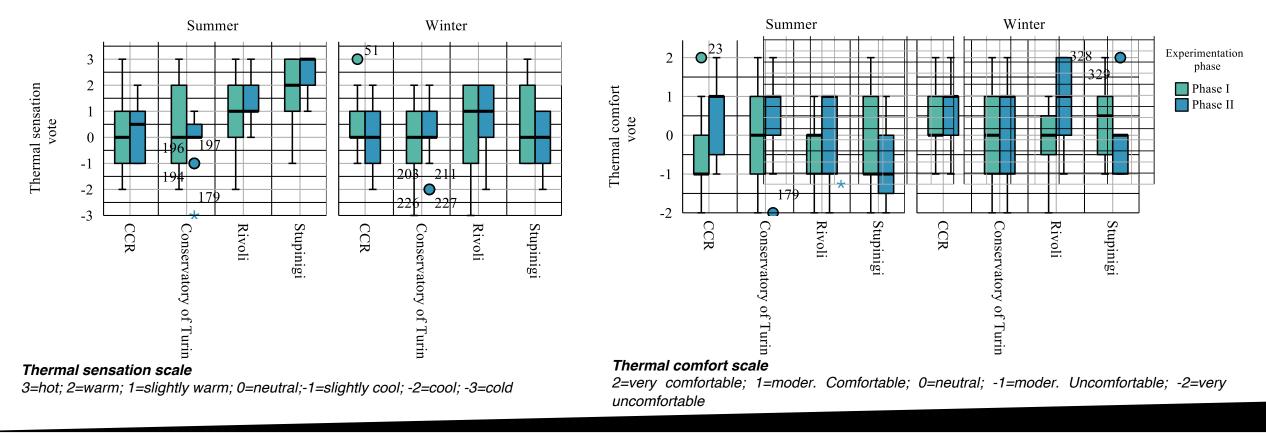
Post-strategies' questionnaire about environmental comfort, communication/education measures and behavioral change.

Strategies and energy related results

Phase II intervention + Phase III seasonal analyses

CASE STUDY	PRINCIPAL OPERATIONAL STRATEGIES	PRINCIPAL EDUCATIONAL STARTEGIES	EFFECT ON ELECTRIC ENERGY CONSUMPTION (%)		EFFECT ON NATURAL GAS CONSUMPTION (%)*	
Turin Conservatory of music	Change of HVAC and VMC T and UR set- points in classrooms and auditorium	Classrooms: all types of posters Offices: newsletters	-39%	-43%	-20%	+4%
Rivoli Castle	Changes in curtains and windows opening in the exposition area. No HVAC strategies (ESCO)	Offices: comfort, remind posters and newsletters Staff: informative presentation with comfort advices	SUMMER	MNTER -9%	HWNS -21%	MINIE 12%
Venaria Restoration Center	Change of temperature set-points in all office types (not restoration labs)	Offices and restoration labs: all types of posters (different per functional areas) and newsletter	-9%	-11%	Not available *normalized GGE/GGI	

Giorgia Spigliantini, PhD, Dr. –Ing.



T E B E

Building-occupants-related results

Impact of strategies on occupants' thermal comfort

- o In all cases (except one) Thermal Sensation Votes range was unaltered or became smaller.
- **Thermal Sensation Votes votes** are generally between slightly cool and slightly hot (-1, +1).
- Also Thermal Comfort votes are generally unaltered or increased. Independent T-test demonstrated that Thermal comfort significantly changed in summer (p=0.001, r=0.26).

Giorgia Spigliantini, PhD, Dr. –Ing.

Ē B E

Conclusive summary

The BIOSFERA methodology was adopted as a way to balance the apparently contradictory aims of the energy and preservation sectors.

Conclusive remarks

- Considering the whole impact of the BIOSFERA methodology on energy consumption (summer + winter and electricity + natural gas), savings ranged from 10% to 16%, with a seasonal peak of 36% (in one case study).
- Occupants' thermal comfort remained unaltered or was enhanced in the large majority of cases. Moreover, they evaluated positively the adopted engagement measures and changed behaviour towards less consuming habits.
- Considering the results and the almost zero-costly implementation, the adoption of the BIOSFERA methodology could have a major impact to reduce energy-related costs of HBs and could also be implemented to reduce the risk of rebound effects in other energy retrofit "material" interventions.

Comparison with other energy retrofit measures applied to HBs* (from 3ENCULT EU project)-*Expected EP savings

Comparable savings: insulation of the roof (\sim 5%), installation of additional windows (\sim 10%), mechanical ventilation with heat recovery (\sim 8%), increase of plant efficiency (\sim 18%)

Higher savings: façade insulation (~ 30%)

Human-driven energy efficiency in historic buildings

