

PROBABILISTIC MACHINE LEARNING FOR OCCUPANCY PREDICTION BASED ON SENSOR FUSION

Amirreza Heidari amirreza.heidari@epfl.ch

Dolaana Kholayg dolaana.khovalyg@epfl.ch

Verena marie barthelmes verena.barthelmes@epfl.ch

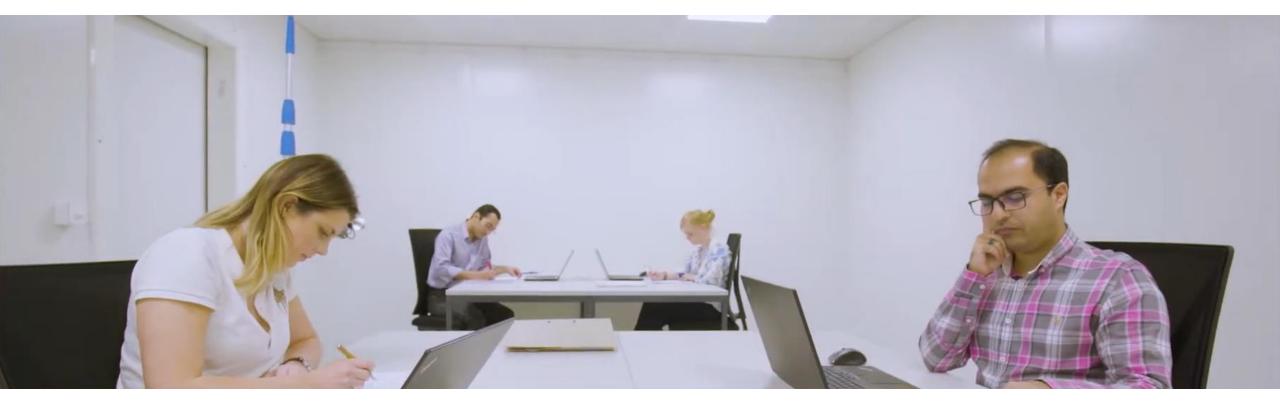
Thermal Engineering for the Built Environment Laboratory EPFL, Lausanne, Switzerland

Why to predict occupancy?

All the building services are to satisfy the occupants

- Automatic schedule of air conditioning
- Adapt ventilation rates

- Regulate temperature set points
- Manage workspace



A possible approach is to use camera

But it is:

COPENHAGEN CENTRE

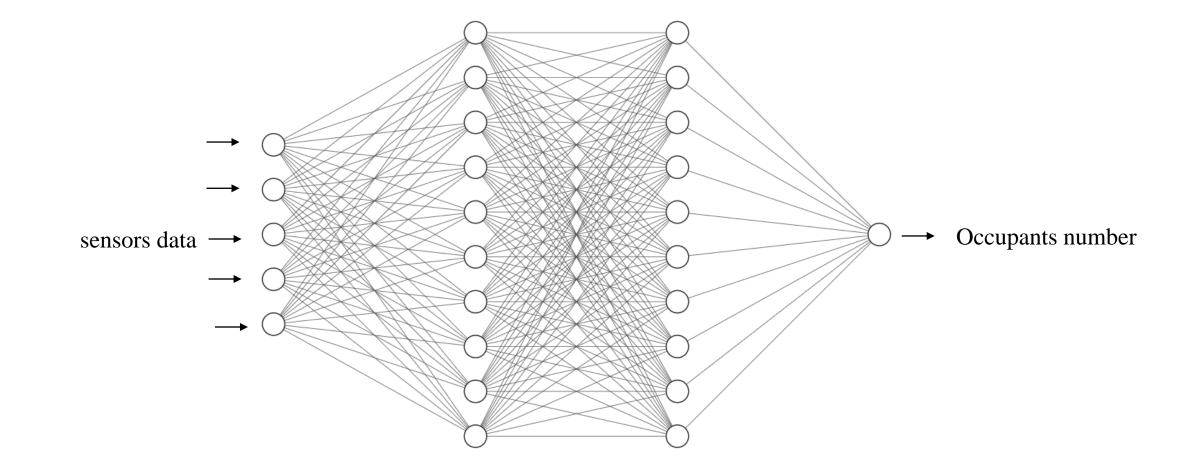
- Expensive
- Intrusive
- Complicated to process and automate

An alternative: Implicit occupancy sensing based on sensor fusion

Use a combination of sensors that are expected to be correlated with occupancy

- Cheap sensors
- Commonly exist in some buildings
- Non-intrusive

Machine Learning for occupancy prediction



Limitation of conventional methods

Human behavior is highly stochastic

Conventional models are deterministic:

- predict a value confidently
- Do not provide any information about how model is certain about the predicted number

While having a good accuracy, exact number of occupants is not predicted most of the time

•

Research aim

A probabilistic deep learning model which:

- Predicts number of occupants
 - Provides the uncertainty of predictions Occupants number sensors data -Uncertainty -7

Methodology

Monte-Carlo Dropout presented by Gal and Ghahramani on 2016 [1]

Probabilistic loss function

Activation of Monte-Carlo Dropout during test phase

$$-\log \varphi_{\theta}(x) = \frac{\log \hat{\sigma}_{\theta}^{2}(x)}{2} - \frac{(y - \hat{\mu}_{\theta}(x))^{2}}{2\hat{\sigma}_{\theta}^{2}(x)}$$

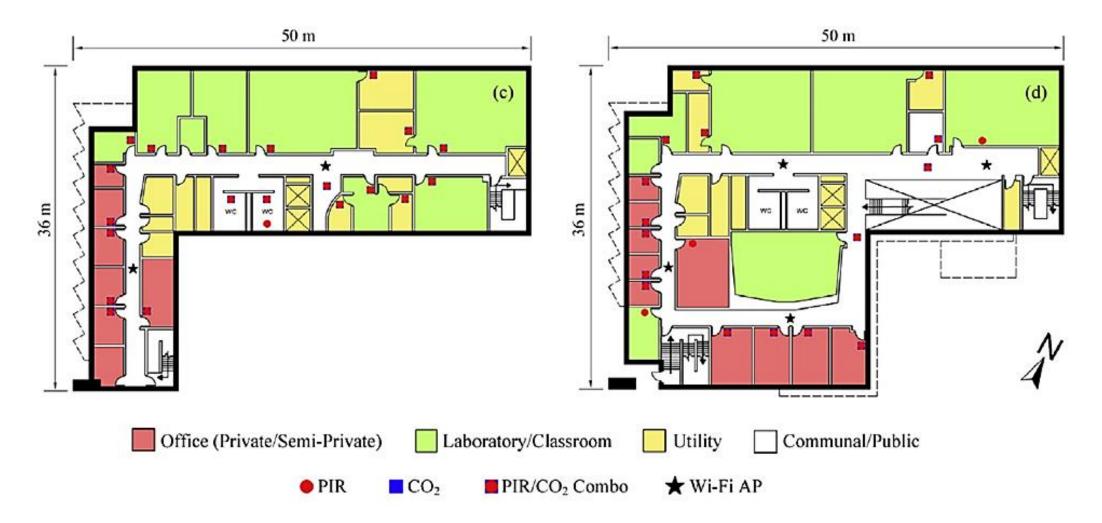
$$\bar{\mu}(x) = \frac{1}{N} \sum_{n \in \mathbb{N}} \bar{\mu}_n(x)$$

$$\bar{\sigma}^{2}(x) = \frac{1}{N} \sum_{n \in \mathbb{N}} (\hat{\sigma}_{\theta}^{2}(x) + \bar{\mu}_{n}^{2}(x)) - y(x)^{2}$$

Case study

- > A 4 floor academic office building in Ottawa, Canada
- measurements include:
 - ✓ CO2 concentration
 - ✓ Detected motions
 - ✓ Plug and lighting power use
 - ✓ Total power use
 - ✓ Number of connected WiFi devices
- Shound truth data provided by camera on the entrance and exit points
- > Public dataset published by Hobson et al. [2]

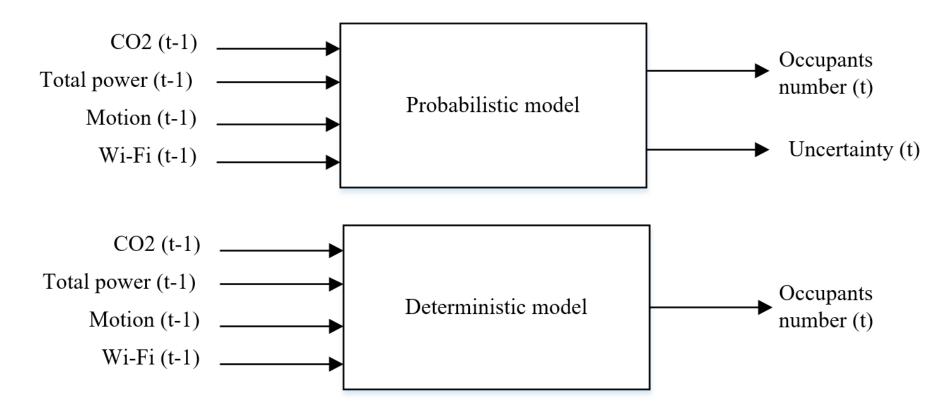
Case study



Location of different sensors in floors 3 and 4 (plans edited from [2])

Developed models

> Two probabilistic models: LSTM, Feed Forward



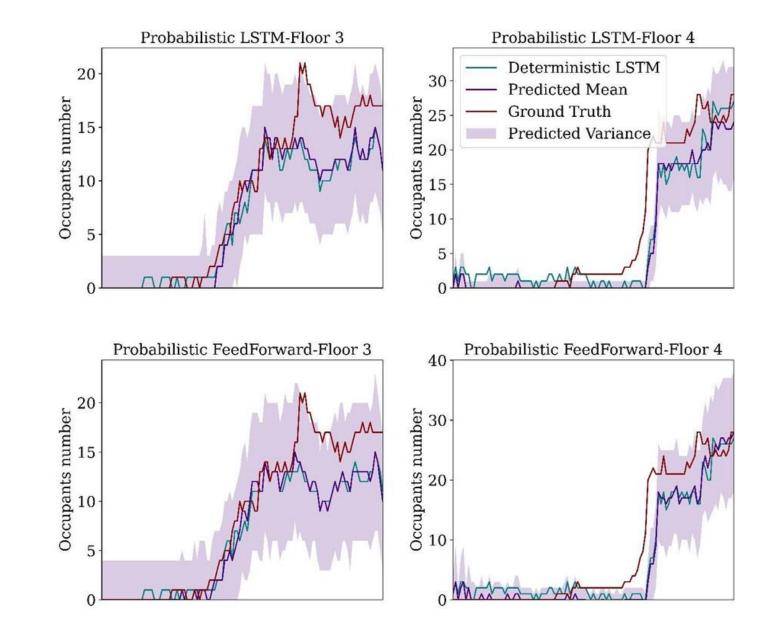
Schematics of models

Developed models

Accuracy of proposed models

Model	Mean Squared Error	Mean Absolute Error	Negative Log-Likelihood
Floor 3			
Probabilistic LSTM	18	2.53	4.84
Probabilistic Feed-Forward	18.95	2.67	2.43
Deterministic LSTM	18.03	2.86	-
Floor 4			
Probabilistic LSTM	8.2	1.9	3.4
Probabilistic Feed-Forward	9.72	2	3.29
Deterministic LSTM	10.24	2.17	-

Predictions by proposed models



EPFL

TEBEL Thermal Engineering for the Built Environment Laboratory

Thank you

Amirreza Heidari amirreza.heidari@epfl.ch

Dolaana Kholayg dolaana.khovalyg@epfl.ch

Verena marie barthelmes verena.barthelmes@epfl.ch₁₄

References:

- 1. Y. Gal and Z. Ghahramani, "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning," in 33rd International Conference on Machine Learning, ICML 2016, 2016.
- 2. B. W. Hobson, D. Lowcay, H. B. Gunay, A. Ashouri, and G. R. Newsham, "Opportunistic occupancy-count estimation using sensor fusion: A case study," Build. Environ., 2019, doi: 10.1016/j.buildenv.2019.05.032.