

Energy Efficiency (EE) e-training - East Africa

Rahul Raju Dusa Senior Expert

Thursday, 18 March 2021

Copenhagen

Energy Audit and Management – for Buildings

Rahul Raju Dusa Senior Expert

Thursday, 18 March 2021

Copenhagen

Types of buildings

... and many more

Energy Audit and Management for Buildings—How?

Energy Audit and Management – What?

Energy Management:

"The judicious and effective use of energy to maximize profits (minimize costs) and enhance competitive positions"

Objective:

- To minimise energy costs / waste without affecting quality, comfort & production
- To minimise environmental effects.

Source: Cape Hart, Turner and Kennedy, Guide to Energy Management Fairmont press inc. 1997

Energy Audit and Management – What?

Energy Audit:

"Systematic approach for decision making in the area of energy management"

"An inspection survey and an analysis of energy flows for energy conservation".

"The verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption".

Source: ¹Energy Conservation Act 2001, Govt. of India

Energy Management - Buildings

Energy Management

Energy management success depends on -

Technical ability

Monitoring system

Strategy plan

Top Management support

Source: BEE India;

COPENHAGEN CENTRE
ON ENERGY EFFICIENCY
SEFORALL EE HUB

Energy Management

Management's commitment and support

- Building Energy Manager
- Energy Team (engineering/procurement/admin/facility management/contractors etc.)
- Energy policy

Energy performance assessment

- BMS
- Baseline and benchmark EPI (kWh/m²/year), efficiencies, energy consumption and costs.
- · Energy audits and performance evaluation

Goal setting

- Defined scope and established goals
- Estimate improvement potential

Source: BEE India;

Energy Management

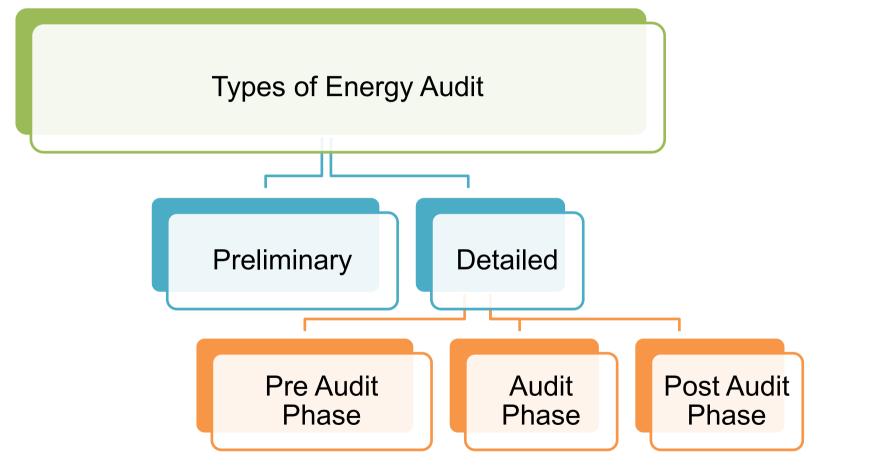
Create action plan

- Roles and responsibilitiesTechnical steps

Implement action plan

- Communicate
- Awareness and capacity building
- Motivate

Progress evaluation and recognition


- Measure results
- Review data, benchmarks and action plans
- Recognition

Energy Audit -Buildings

Energy Audit – How?

Preliminary Energy Audit

Preliminary Energy Audit

Example: Energy Efficiency in municipal buildings

 Types of buildings – Residential complexes / commercial / educational / institutional / office / industrial.

Source: https://images.app.goo.gl/ydyWi6iv2KmKyXsP9

Preliminary Energy Audit - steps

Annual energy consumption (electricity, gas, etc.)

EPI kWh/m²/year

consumptio

stablish

Major energy consumption areas.

Technology (eg. FTL, LED, CFL)

Age

Application
(eg. Space
heating,
cooking, hot
water, cooling)

Replacement to EE light fittings

ow hanging fruits

Better labeling of AC units

EE motors

Window type (pane, glazing, shading, etc.)
Insulation

Insulation (wall, roof, pipelines, etc.)

HVAC performances

In-depth study areas

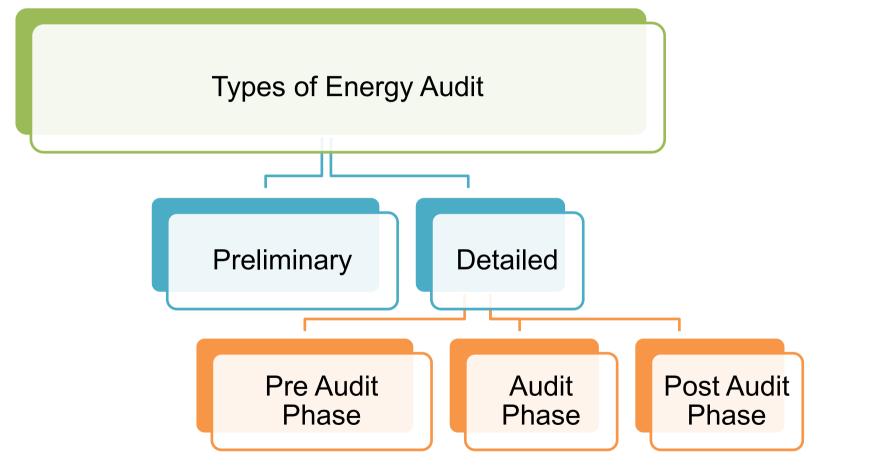
Pump efficiencies

Simulations for heat and cooling load optimization

point ____

Reference

EPI baseline (w.r.t. energy load, technology, building type, etc.)



Preliminary Energy Audit - steps

Building type	Total numbers	Energy consumption	Potential energy savings	Scope areas
Residential complexes	20			
Industrial buildings /storage/warehouses	5			
Office buildings	50		HIGHEST ?	Lighting HVAC insulation
Commercial / retail / wholesale /malls	15			Lighting, HVAC
Educational	5		LOWEST?	lighting
Healthcare	5			
Etc.				

Note: value and content in the table is for example and are not actual

Energy Audit – How?

Detailed Energy Audit

Energy Audit Instruments

Energy audit instruments

Power analyzers

Anemometer

Multi-function kit – (T, RH, P, etc.)

Ultrasonic water flow meter

Infra-red thermohunter

Thermograph

Lux meter

Data loggers

CO2 meters

Pre Audit Phase

Detailed Energy Audit

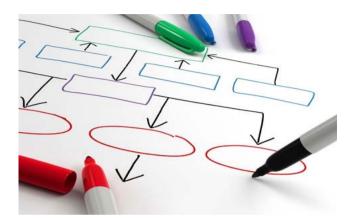
Step 1

Step 2

Step 3

Step 4

Step 5


Step 6

Step 7

Step 8

Step 9

Step 10

Plan & organize

Walk-through audit

Interview with energy manager, facility or production manager

Resource planning

Macro data

Familiarize

UNEP DTU
PARTNERSHIP
ON ENERGY EFFICIENCY

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Questionnaire – Building details

	Study facility	Head Quarters/Office
Name & Address of	M/s ABC .Ltd	
Company		
Phone No.		
Email		
Contact person name		
Designation & phone		
Type of facility	Hotel	
Capacity		

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Questionnaire – energy sources

Source	Year 2	2020-21	Year 20	Year 2019-20 Major Consumption		
	Qty	Cost (local currency)	Qty Cost (local currency)		Points	
Electricity	78,77,871 kWh	6,45,98542	,98542 71,49,613 5,86,2682		Chillers & pumps	
FO/LSHS						
Coal / LPG /						
NATURAL GAS						
HSD						
Others						
Occupancy	2500 / day		1800	/ day	Kitchen, banquet	
levels		-			halls.	
Aux power						

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Questionnaire – energy sources

Parameter	Value
Contract demand, kVA	
Demand charges, \$/kVA	
Unit charges, \$/kWh	
Average power factor	0.99
Total capacitor bank capacitance installed, kVAR	3622
Location of capacitors	PCC and MCC rooms
Etc.	

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

<u>Questionnaire – equipment and components</u> Transformers:

No. of transformers & type	Capacity	Location	Incoming Voltage	Supply Voltage	OLTC Details
3 no's oil immersed type	2.5 MVA	S-11 transformer yard	11 KV	415 V	NA

Motors:

Size	kW Range	Nos.				Operating	
	Range	SC	SC Slipring Synchro- D.C				
				nous		h/y	
Utility Cooling tower motor(2nos)	37	Yes				8760	
210 TR chiller pump motors(2 no's)	30	Yes				8760	
					_		

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Questionnaire – equipment and components HVAC systems:

Unit capacity TR	Compressor Type / VAU	Make & Model	Application & desired condition	Energy consumption per year
210 TR	Compressor	Daikin(PFS 2202DARY)	Chilled water supply	4,60,417
200 TR	Compressor	King Air(KCWF2 200A1)	Chilled water supply	67,056

Motors:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Questionnaire – equipment and components

Similar data collection for

- Fans and blowers
- Cooling towers
- Lighting⁶
- Boilers and steam or hot water generators
- Diesel generator sets (if any)
- Building envelope details (area, orientation, insulation, material, windows, glazing, shading, roof reflective coating etc.)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Resource planning and allocation - Instruments

S No	Description	Numbers	Functions
1	Krykard ALM 32 power analyser	4	Three phase power and harmonic analysers
2	Krykard ALM 10 power analyser	1	Single phase power and harmonic analysers
3	Fluke-41B power analyser	2	Power and harmonic analysers
4	Anemometer	2	Air flow measurements
5	Multifunction kit	1	RH%, Temperature, Pressure, flow
6	Lux meter	2	Illumination levels
7	Ultrasonic flow meter	1	Water flow measurements
8	Infra-red pyrometer	1	Surface temperature measurements

Step 1 Resource planning and allocation - Professionals Step 2 Step 3 Person A Team lead Step 4 Step 5 Step 6 Step 7 Mechanical Electrical/Automation Chemical Step 8 Step 9 Person B Person C Person D Person E Person F Person G Step 10

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Resource planning and allocation - Professionals

Da	ay	Date	Date Electrical 1 Electrical 2		Thermal 2	Thermal 2 and 3			
				Walk through					
Day 1	Tue	25-Jun-21 2 Transformers (3150 kVA each) + and other required panel loggings		3 chillers + aux + AHUs	I3 Chillers + aux + Ahus	AHUs (98 no's total) + VRV + VAU			
Day 2	Wed	26-Jun-21	2 Transformers (3150 kVA each) + and other required panel loggings	AHUs + VRV + VAU	·	AHUs (98 no's total) + VRV + VAU			
Day 3	Thu	27-Jun-21	DGs / lighting internal	VP+ fans and other drives+ Air compressor logging	Fans / Vacuum pumps (5no.s) + air compresser	Process and user end compressor + chilled water			
Day 4	Fri	28-Jun-21	Systems electrical assessment	remaining process and utility drives	Process and user end compressor + chilled water	Process and user end compressor + chilled water			
Day 5	Sat	/4_IIIn_/I	•	-	interim discussion / pending works/Material exit	interim discussion / pending works/Material exit			

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Resource planning and allocation - Milestones

A ativity	Tantativa datas	Weeks							
Activity	Tentative dates		2	3	4	5	6	7	8
Preliminary visit	10-Jun-21								
Kick-off meeting	14-Jun-21								
Building 1 Field study	17-Jun-21 to 24-Jun-21								
Building 2 Field study	25-Jun-21 to 28-Jun-21								
Post field study presentations	02-Jul-21								
Report preparation	3-Jul-21 to 31-Jul-21								
Closing final presentation	First week of August								

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10



Conduct kick-off meeting – Divisional heads, associated and concerned personnel

Cooperation

Interaction

Create awareness

Audit Phase

Detailed Energy Audit

Step 1

Step 2

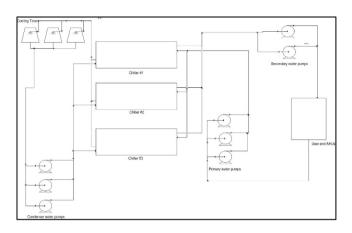
Step 3

Step 4

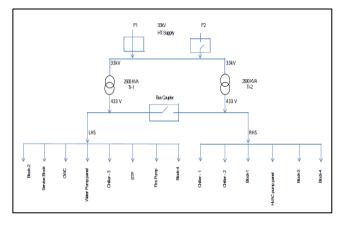
Step 5

Step 6

Step 7


Step 8

Step 9


Step 10

Collect primary data

Flow diagrams

Energy utility diagrams

Historic and baseline data

Flow charts and utility diagrams

Energy bill and consumption pattern

Source: BEE India: https://images.app.goo.gl/sazMnrCe76HXgieKA:

COPENHAGEN CENTRE
ON ENERGY EFFICIENCY
SEFORALL EE HUB

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Data collection examples

- 1. Geographic coordinates
 - a. Location
 - b. Latitude
 - c. Elevation
- 2. Internal and External conditions
 - a. Temperature
 - b. Relative humidity
- 3. Orientation
- 4. Building Enclosure
- 5. Insulation levels of walls, ceilings, and floors (Standard assumptions considered)
- 6. Window specification
 - a. Dimensions
 - b. Thermal conductivity (Standard assumptions considered)
 - c. Solar Heat Gain Coefficient (SHGC) (Standard assumptions considered)

- 7. Infiltration and ventilation levels
- 8. Internal loads
- 9. Number of occupants / people density
- 10. Electronics, lighting and appliances.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

In-depth survey and monitoring

Collection for more accurate data

Confirm and compare operating and design data

Source: BEE India; https://images.app.goo.gl/8b1WHLTzNC6ipCfo8; https://images.app.goo.gl/JRtXpmToTkv3pnsx5; https://images.app.goo.gl/AwMbgGPkT8Dgxp776;

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

EA discussion with maintenance staff

- Are there any leaks in the roof?
- Are there moisture problems with the envelope of the building?
- Are there any general renovation needs for the envelope of the building? (rotten window frames, water leaks in seams of concrete plate, areas of insufficient insulation, etc.).
- Are there leaks in domestic water, waste water or heating systems?
- Are there cold or draughty spaces?
- Are any spaces too warm during the heating season?
- Are there any cooling needs?
- Are there frequent interruptions in water, heat or electricity supplies?
- Immediate repairs needed to domestic and waste water systems, heating and air-conditioning systems and electrical systems and how these needs should be taking into account when saving proposals are considered.

Source: http://www.brita-in-pubs.eu/toolbox/EA files/EA Quide Axovaatio ENG RUS.pdf;

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Data survey and monitoring example

Design details of chillers							
Description	Unit	Chiller - 1,2 &3					
		Air cooled Semi Hermetic					
Туре		screw					
Model		FOCS2/CA3602					
Make of compressor		Bitzer					
No of compressor in each chiller	Nos.	2					
Refrigerant		R134A					
Type of Evaporator		Shell & Tube - Dx					
Make of Evaporator		Climaveneta					
Evaporator water flow	m³/h	93					
Entering water temperature (EWT)	0C	15					
Leaving water temperature (LWT)	0C	7					
Differential Temperature	0C	8					
Air cooled condenser							
Number of fans per chiller	Nos.	16					
Input power of condenser fans, each	kW	2					
Max. Ambient temperature	0C	36					
Cooling Capacity	TR	246					
Power input to chiller compressor	kW	240.7					
Max. Input power including condenser fans	kW/TR	272.7					
Specific Energy Consumption	kW/TR	1.11kW/TR					

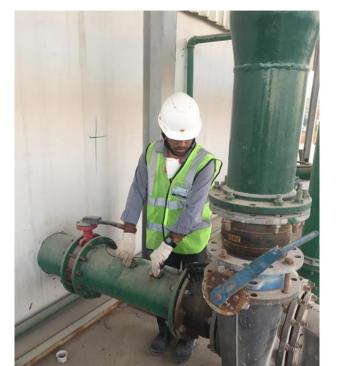
Step 1

Step 2

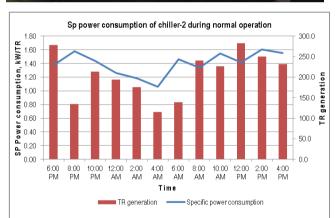
Step 3

Step 4

Step 5


Step 6

Step 7


Step 8

Step 9

Step 10

Power monitoring

Load variation trends

Efficiency
Performance
assessment and
trials

Detailed trials and Experiments for energy intensive areas

Source: BEE India; T E R I. 2013 [Project Report No. 2013IB05];

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Measurements

Instantaneous power measurements carried out with portable load

analyser for all the motors

Source: BEE India; T E R I. 2013 [Project Report No. 2013IB05];

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Measurement using
Ultrasonic flow meter on
a chilled water line

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6


Step 7

Step 8

Step 9

Step 10

Measurement using air flows in AHU Ducts

Source: https://images.app.goo.gl/8cqKPotjTJ6paSWD6,

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Trials and experiments - examples

Transformer loading operational trials									
		Existing scenario				Proposed scenario			
Danamatan		Tra	fo-1	o-1 Trafo-2		Trafo-1		Trafo-2	
Parameter Description	Unit	Day time	Night time	Day time	Night time	Day time	Night time	Day time	Night time
Rated capacity	kVA	3150	3150	3150	3150	3150	3150	3150	3150
No load losses	kW	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Load losses	kW	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2
BEP	%	37.9	37.9	37.9	37.9	37.9	37.9	37.9	37.9
Avg load	kVA	1616	770	508	154	1062	462	1062	462
Peak load	kVA	1854	866	641	216	1248	541	1248	541
% Loading of trafo	%	58.9	27.5	20.4	6.9	39.6	17.2	39.6	17.2
No load losses	kW	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Daily Load losses	kW	8.8	2.0	1.0	0.1	3.9	0.7	3.9	0.7
Total losses	kWh	156	74	62	52	97	59	97	59
Total losses	kWh/day	230 113 156				1:	56		
Total losses	kWh/day	344 313							

Step 1

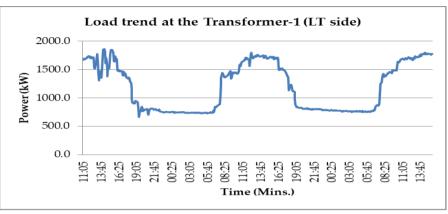
Step 2

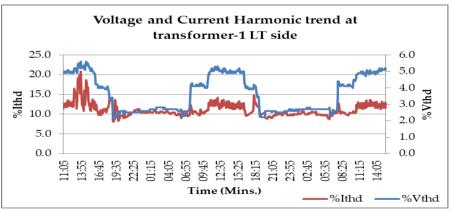
Step 3

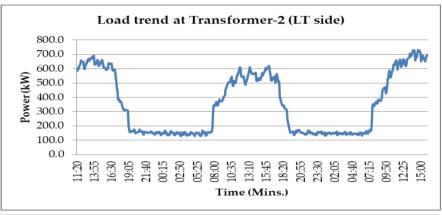
Step 4

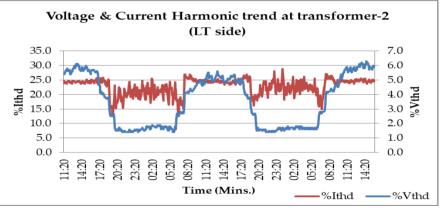
Step 5

Step 6


Step 7


Step 8


Step 9


Step 10

Trials and experiments - examples

Step 1

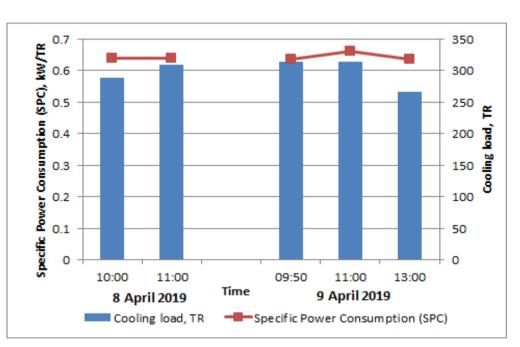
Step 2

Step 3

Step 4

Step 5

Step 6


Step 7

Step 8

Step 9

Step 10

Trials and experiments - examples

Parameters	Unit	Secondary pump 4 no's (1R/3S)						
		Rated			Operat	ing		
			30 Hz	35 Hz	40 Hz	45 Hz	50 Hz	
Make		Grundf os						
Туре		NB100- 250/24 5						
Flow	m3/h	160	70.6	82	91.1	101.2333	100.7	
Total Head	m	16	6	8	11.5	14.5	17.5	
Hydraulic power	kW	6.976	1.15	1.79	2.85	3.99	4.80	
Motor power	kW	11	2.6	4.2	6.3	8.6	11.3	
% motor loading	%		23.64	38.18	57.27	78.18	102.73	
Motor efficiency		88.4 %						
Pump efficiency	%	71.74	50.22	48.15	51.26	52.61	48.07	
Overall efficiency	%	63.42	44.40	42.56	45.32	46.51	42.50	

Step 1

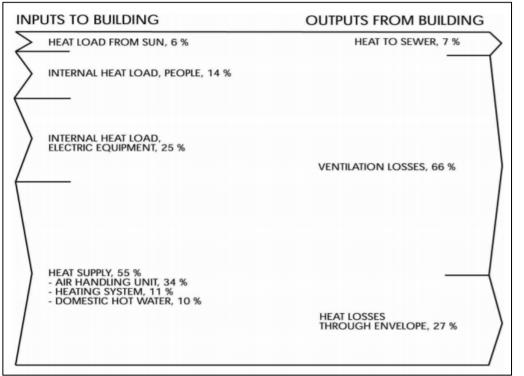
Step 2

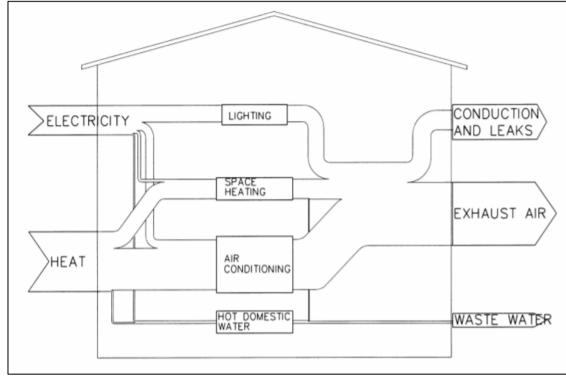
Step 3

Step 4

Step 5

Step 6


Step 7


Step 8

Step 9

Step 10

Example for energy balance for buildings

Source: http://www.brita-in-pubs.eu/toolbox/EA files/EA Quide Axovaatio ENG RUS.pdf;

Step 1

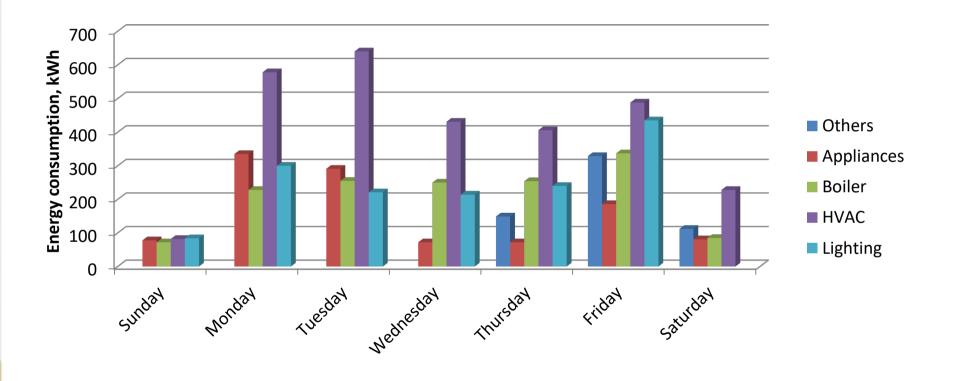
Step 2

Step 3

Step 4

Step 5

Step 6


Step 7

Step 8

Step 9

Step 10

Analysis of energy use examples for buildings

Note: Graph is only for example reference. Values does not represent actual value.

Step 1

Step 2

Step 3

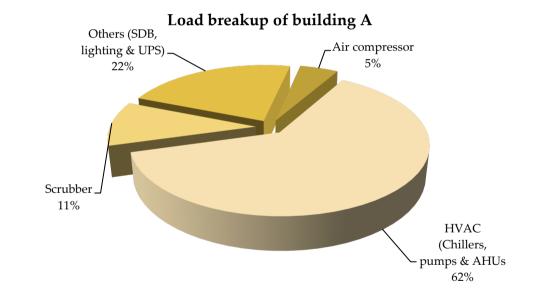
Step 4

Step 5

Step 6

Step 7

Step 8


Step 9

Step 10

PARTNERSHIP

Analysis of energy use examples for buildings

Load break-up of the building						
	Measured load, kW					
Description	Weekend day Working day (Sunday)					
Utility MCC-4	203.6	160.0				
AREA -II	120.5	60.0				
PMCC-2	507.7	200.0				
PMCC-1	179.1	70.0				
AREA –I	211.8	35.0				
Chiller-1	178.6	175.0				
Chiller-2	188.3	0.0				
AREA- III	533.2	150.0				
VRF unit	166.7	0.0				
Total	2289.5	850.0				

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

S.No	Energy Conservation Measures							
Electi	ctrical Systems							
1	Parallel operation of Transformer-1 & 2							
2	Install capacitor banks near chillers							
Refriç	geration and Air Conditioning systems							
2	Switch of primary chilled water pump							
3	Replace process chilled water pump with optimum sized pump							
4	Bypass VFDs of AHUVFM01, AHU 521, AHUVFM6, AHUVFM5, AHU516,							
	AHU511, CSU01							
Fans	blowers and Vacuum pumps							
6	Avoid fresh air inclusion at the suction of the scrubber blower for Scrubber 35,							
	37,38, 39, Fume exhaust 3,4,7,9							
7	Switch off Scrubber 27 B blower which is installed improperly							
Comp	pressed air system							
8	Replace S 16 air compressor with S 14 air compressor							
Lighti	Lighting							
9	Replace the existing 2 x 36 W T8 FTLs lamps with energy efficient 2 x 16 W T8							
	LED tube lights							

Brainstorm

Contact vendors/ suppliers/technology providers

Consolidate measures

Identify and develop energy conservation opportunities

Source: BEE India; https://images.app.goo.gl/tndVf5Y6w8sw7hpv8; https://images.app.goo.gl/mEUhN4TTRbUvp5GV9;

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Type of Recommendations	No. of Recommend ations	Annual Saving Potential, Rs. Lakh	Cost o f Implementa tion, Rs. Lakh	Payback Period, Years
Short term investment, payback less than I Year	10	20.12	4.98	0.2
Medium investment, payback between 1- 3 years	5	10.06	20.7	2.1
Long investment, payback more than 3 years	2	11.57	61.62	5.3
Total	14	41.75	87.30	2.1

Cost savings

= Energy savings

× Per unit Energy cost

Cost benefit analysis

Source: BEE India: https://images.app.goo.gl/wTPuN3aAJEzznYx86:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Cost benefit analysis example – Electrical systems EC measures

S.No	Energy Conservation Measures	Annual Energy Savings Potential	Annual energy cost Savings,	Investment, Cost	Simple payback period
		Electricity, Lakh kWh	Value, Rs Lakh	Rs Lakh	Years
1	Parallel operation of Transformer-1 & 2	0.11	0.96	Nil	Immediate
2	Install capacitor banks near chillers	0.04	0.34	Nil	Immediate
3	Provide additional run of cable to Air compressor-2 and Chiller secondary pumps panel board	0.06	0.48	1	2.1
4	Install Active filter at different load centres	0.40	3.43	24	7.0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Cost benefit analysis example - HVAC EC measures

S.No	Energy Conservation Measures	Annual Energy Savings Potential	Annual energy cost Savings,	Investment, Cost	Simple payback period
		Electricity, Lakh kWh	Value, Rs Lakh	Rs Lakh	Years
1	Switch off primary chilled water pump	1.10	9.34	Nil	Immediate
2	Replace process chilled water pump with optimum sized pump	0.17	1.43	1.5	1.05
3	Bypass VFDs of AHUVFM01, AHU 521, AHUVFM6, AHUVFM5, AHU516, AHU511, CSU01	0.02	0.20	Nil	Immediate
4	Avoid leakage of cold supply air via parallel connected stand-by systems for S16/TF/VAU 15A ,B and S16/TF/VAU13A,B	0.32	2.70	Minimal	Immediate
5	Technology upgradation to Electronically Commutated (EC) fan motors for the AHUs	0.96	8.14	37.62	4.6

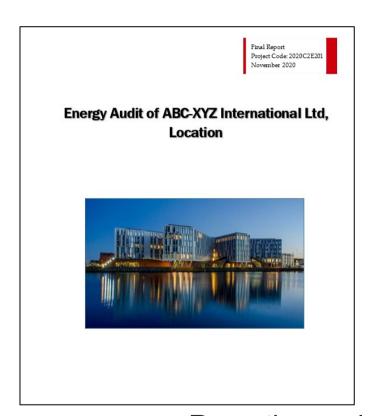
Step 1

Step 2

Step 3

Step 4

Step 5


Step 6

Step 7

Step 8

Step 9

Step 10

Reporting and presentation to the top management

Source: BEE India; https://images.app.goo.gl/wTPuN3aAJEzznYx86; https://images.app.goo.gl/TXswSTaHbZKuAvQ57;

Post Audit Phase

Detailed Energy Audit

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

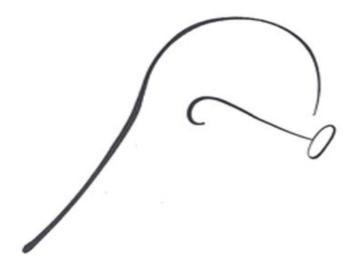
Step 7

Step 8

Step 9

Step 10

Assist in Implementation


Follow up

Periodic review

Implementation and Follow-up

Source: BEE India;

Be the change you want to see in the world

Thank You

Email: rradu@dtu.dk

List of references used

Slide: Building types. Picture references link

- Residential: https://images.app.goo.gl/wTyoGqCzZFiJNtYC9
- Educational: https://images.app.goo.gl/Pw641u3w7ckAjYZ17
- Healthcare: https://images.app.goo.gl/tgke3QWJXQSi8SSU9
- Business: https://images.app.goo.gl/Fq5dFSbK3B3Rd7p1A
- Industrial: https://images.app.goo.gl/MtTxPfTbvji1jqWS9
- Storage: https://images.app.goo.gl/3yDckhpoW5835ZYi9

