Energy Efficiency Training – Mozambique

Rahul Raju Dusa Senior Expert

Thursday, 24 November 2020

Scheduled Topics

Day	Module	Торіс
12 November 2020	1.1	What is Energy Efficiency
16 November 2020	1.3	EE Strategic Planning – Part 1
19 November 2020	1.4	Energy Audit and Management
24 November 2020	2.2	Energy Audit and Management for Buildings
26 November 2020	2.5	Energy Efficiency - HVAC systems

Email: rradu@dtu.dk

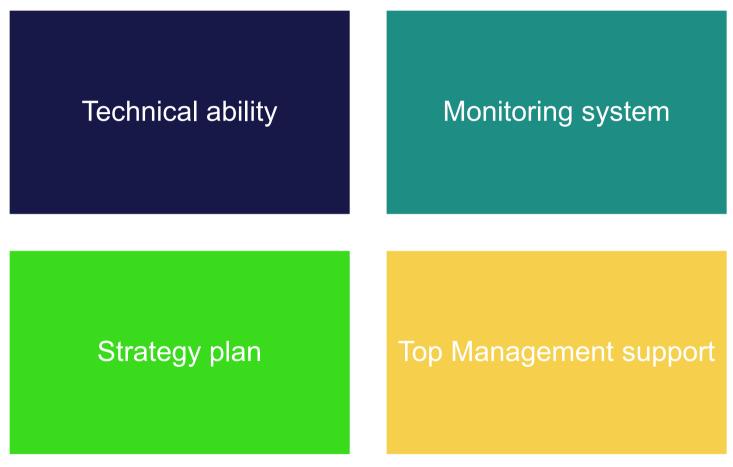
Energy Audit and Management – for Buildings

eTraining - Enhancing Energy Efficiency (EE) in Mozambique

Types of buildings

Healthcare

... and many more



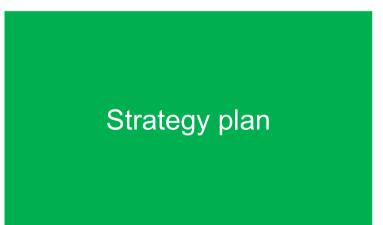
Energy Audit and Management for Buildings– How ?

Energy Management -Buildings

Energy management success depends on -

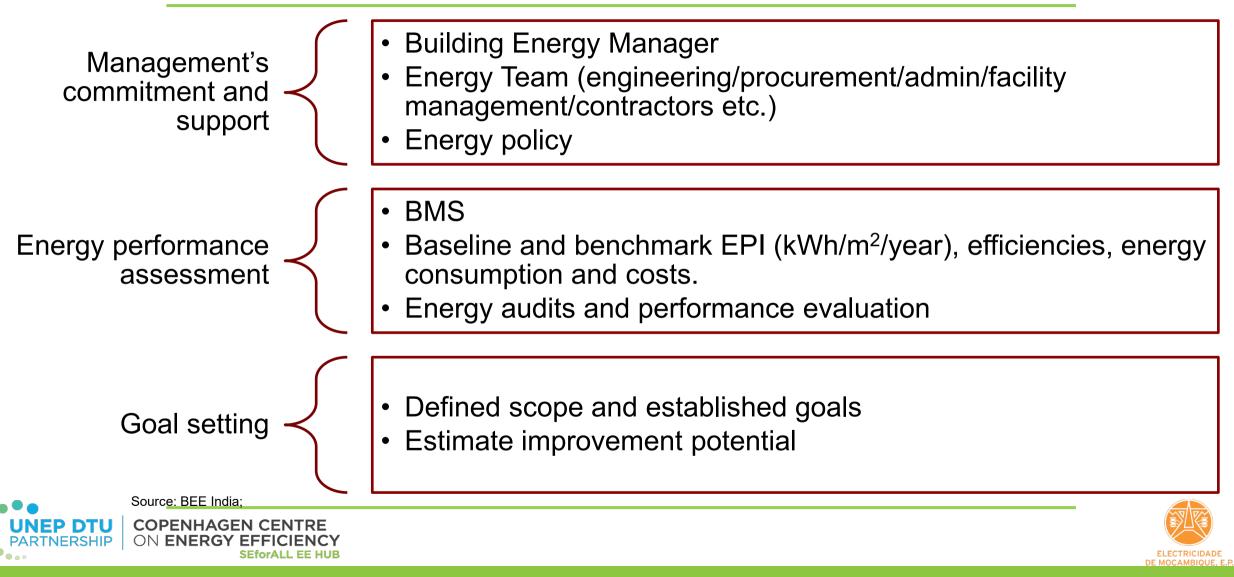
Technical ability

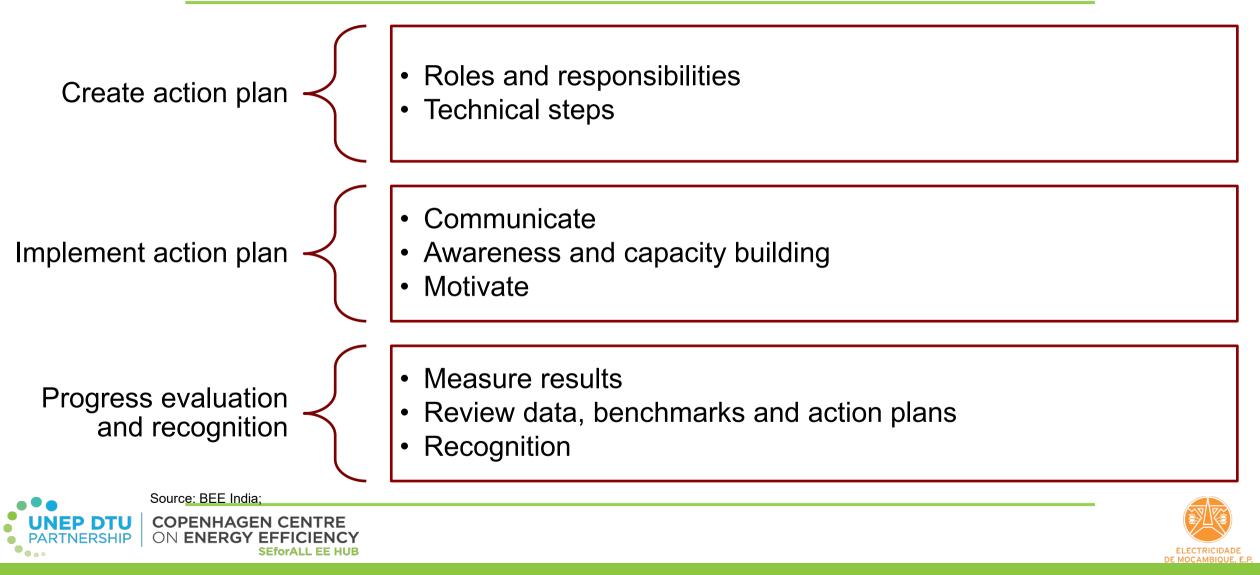
- Energy terminologies
- Systems installed Envelope, the passive and active components


- Efficiencies and Performances –
 - insulation health,
 - Lighting lux levels
 - HVAC efficiency
- Building Management System in place?

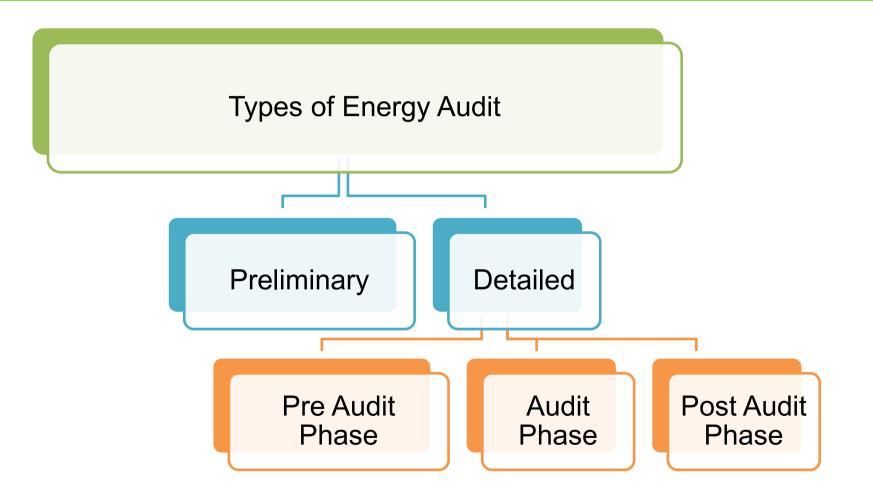
Monitoring system

- Defined objectives and goals
- Clear steps to achieve those goals

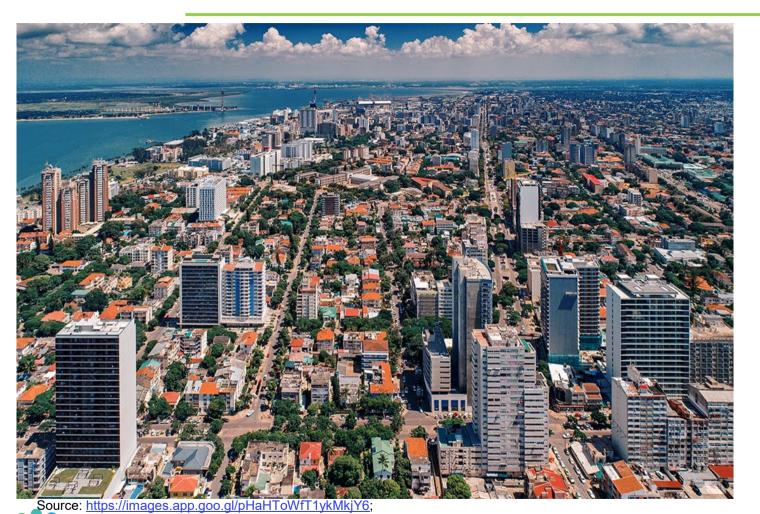



• Management support to initiate.

Top Management support



Energy Audit - Buildings



Preliminary Energy Audit

Preliminary Energy Audit

UNEP DTU

PARTNERSHIP

COPENHAGEN CENTRE

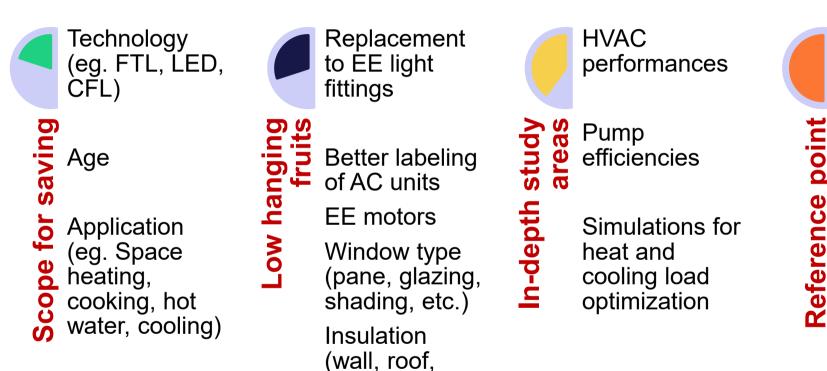
ON ENERGY EFFICIENCY

SEforALL EE HUB

Example: Energy Efficiency in municipal buildings

 Types of buildings – Residential complexes / commercial / educational / institutional / office / industrial.

eTraining - Enhancing Energy Efficiency (EE) in Mozambique


Preliminary Energy Audit - steps

Annual energy consumption (electricity, gas, etc.) EPI kWh/m²/year Major energy consumption areas.

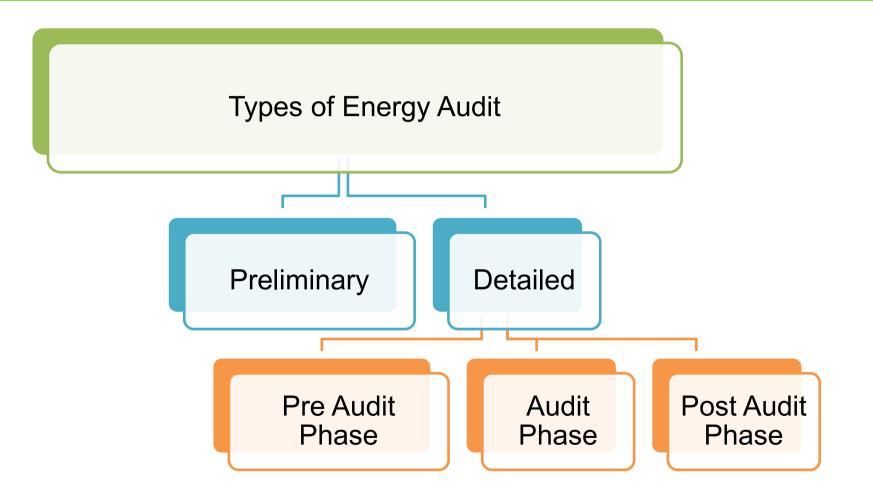
energy

stablish

ш

pipelines, etc.)

EPI baseline (w.r.t. energy load, technology, building type, etc.)


Preliminary Energy Audit - steps

Building type	Total numbers	Energy consumption	Potential energy savings	Scope areas
Residential complexes	20			
Industrial buildings /storage/warehouses	5			
Office buildings	50		HIGHEST ?	Lighting HVAC insulation
Commercial / retail / wholesale /malls	15			Lighting, HVAC
Educational	5		LOWEST?	lighting
Healthcare	5			
Etc.				

Note: value and content in the table is for example and are not actual

Detailed Energy Audit

Energy Audit Instruments

Energy audit instruments

Pre Audit Phase

Detailed Energy Audit

	Step 1	<u>Questionnaire – Bui</u>	Iding details	
	Step 2			
	Step 3	Name & Address of	M/s ABC .Ltd	Head Quarters/Office
	Step 4	Company Phone No.		
	Step 5	Email		
	Step 6	Contact person name Designation & phone		
	Step 7	Type of facility	Hotel	
	Step 8	Capacity		
	Step 9			
	Step 10			
•		COPENHAGEN CENTRE ON ENERGY EFFICIENCY		
		SEforALL EE HUB		e DE

ELECTRICIDADE

Step 2 Step 3	Source	Year 2020-21		Year 20	Major Consumptior	
Step 4		Qty	Cost (local currency)	Qty	Cost (local currency)	Points
Step 5	Electricity	78,77,871 kWh	6,45,98542	71,49,613	5,86,26827	Chillers & pumps
Step 6	FO/LSHS					
Step 7	Coal / LPG / NATURAL GAS					
Step 8	HSD					
· ·	Others					
Step 9	Occupancy levels	250	0 / day	1800	/ day	Kitchen, banquet halls.
Step 10	Aux power					

Step 1	<u>Questionnaire – energy sources</u>	
Step 2	Parameter	Value
Step 3	Contract demand, kVA	
Step 4	Demand charges, \$/kVA	
Step 5	Unit charges, \$/kWh	
Step 6	Average power factor	0.99
Step 7	Total capacitor bank capacitance installed, kVAR	3622
Step 8	Location of capacitors Etc.	PCC and MCC rooms
Step 9		
Step 10		
	COPENHAGEN CENTRE ON ENERGY EFFICIENCY SEforALL EE HUB	

ELECTRICIDADE DE MOCAMBIO

Step 1	Questionnaire – eq	uipment and	compone	<u>nts</u>						
Step 2	Transformers:									
Step 3	No. of transformers &	Capacity	Loca	ation			ming	Sup		OLTC
Step 4	type 3 no's oil immersed type	2.5 MVA	S-11 trans	former y	/ard		tage KV	Volta 415	-	Details NA
Step 5	Motors:									
Step 6	Size		kW			N	0S.			Operating
Step 7			Range					-		
Step 8				SC	Slip	ring	Syncl nou		D.C	h/y
Step 9	Utility Cooling tower mot	tor(2nos)	37	Yes						8760
Step 10	210 TR chiller pump r	motors(2 no's)	30	Yes						8760
	COPENHAGEN CENTRE									
PARTNERSHIP	ON ENERGY EFFICIENCY SEforALL EE HUB									ELECTRICIDADE DE MOCAMBIQUE, E.P.

	Step 1	9	Questionnair	<u>e – equipmen</u>	it and com	<u>ponents</u>	
	Step 2	I	HVAC systems:				
	Step 3		Unit capacity	Compressor	Make &	Application & desired	Energy
	Step 4	p 4		Type / VAU	Model	condition	year
	Step 5		210 TR	Compressor	Daikin(PFS 2202DARY	Chilled water supply	4,60,417
	Step 6) King		
	Step 7		200 TR	Compressor	Air(KCWF2	Chilled water supply	67,056
	Step 8				200AT)		
	Step 9		Unit capacity TRCompressor Type / VAUMake & ModelApplication & desired conditionconsumption per year210 TRCompressorDaikin(PFS 2202DARY 				
	Step 10		wolors:				
•			NHAGEN CENTRE NERGY EFFICIENCY SEforALL EE HUB				

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

Step 10

UNEP DTU

PARTNERSHIP

Questionnaire – equipment and components

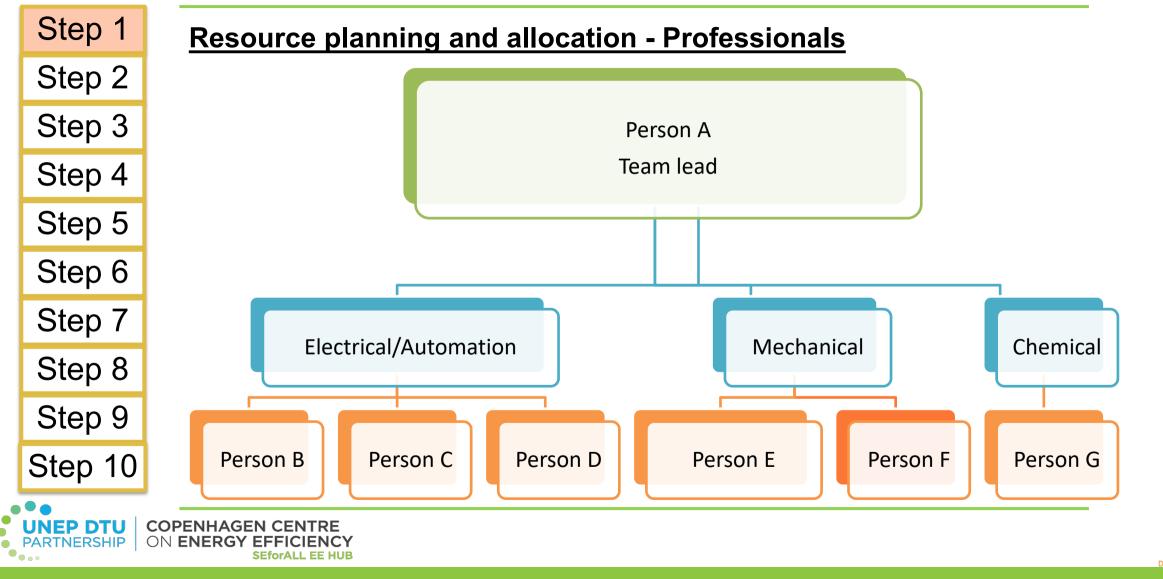
Similar data collection for

- Fans and blowers
- Cooling towers
- Lighting'

COPENHAGEN CENTRE ON ENERGY EFFICIENCY

SEforALL EE HUB

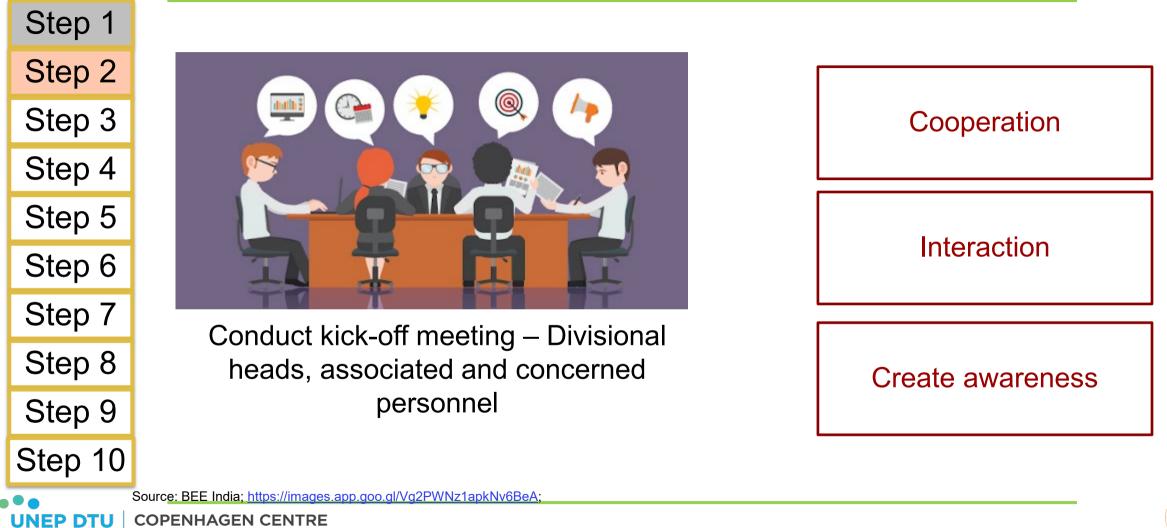
- Boilers and steam or hot water generators
- Diesel generator sets (if any)
- Building envelope details (area, orientation, insulation, material, windows, glazing, shading, roof reflective coating etc.)



Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10

Resource planning and allocation - Instruments

Z	S No	Description	Numbers	Functions
3	1	Krykard ALM 32 power analyser	4	Three phase power and harmonic analysers
4	2	Krykard ALM 10 power analyser	1	Single phase power and harmonic analysers
5	3	Fluke-41B power analyser	2	Power and harmonic analysers
6	4	Anemometer	2	Air flow measurements
7	5	Multifunction kit	1	RH%, Temperature, Pressure, flow
8	6	Lux meter	2	Illumination levels
_	7	Ultrasonic flow meter	1	Water flow measurements
9	8	Infra-red pyrometer	1	Surface temperature measurements

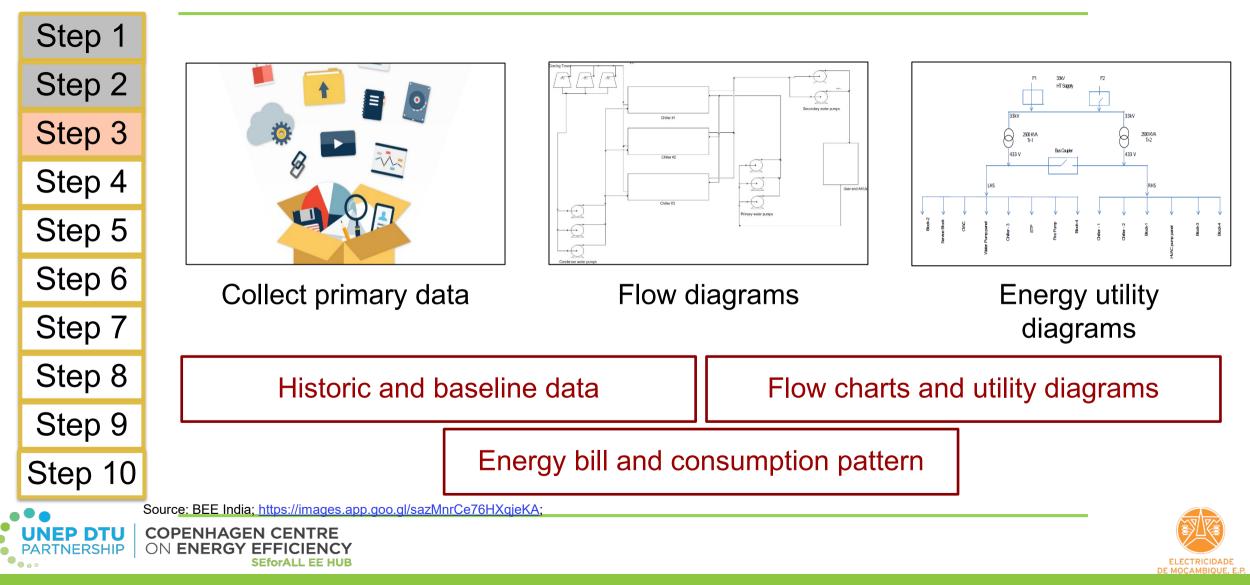


ELECTRICIDADE

Step 2	tep 2 📃		Date	Electrical 1	Electrical 2	Thermal 2	Thermal 2 and 3	
-					Walk t	hrough		
Step 3	Day 1	Tue	25-Jun-21	2 Transformers (3150 k\/A each) +			AHUs (98 no's total) + VRV +	
Step 4				2 Transformers (3150 kVA each) + and other required panel loggings	3 chillers + aux + AHUs	3 chillers + aux + AHUs	VAU	
Step 5	Day 2	Wed	26-Jun-21	2 Transformers (3150 kVA each) + and other required panel loggings		3 chillers + aux + process and	AHUs (98 no's total) + VRV +	
Step 6				and other required panel loggings		utility CT	VAU	
Step 7	Day 3	Thu	27-Jun-21	DGs / lighting internal	VP+ fans and other drives+ Air compressor logging	Fans / Vacuum pumps (5no.s) + air compresser	Process and user end compressor + chilled water	
Step 8	tep 8		28-Jun-21	ISVSTems electrical assessment	remaining process and utility drives	Process and user end compressor + chilled water	Process and user end compressor	
Step 9							+ chilled water	
Step 10	Day 5	VI Vat I 79-100-71		interim discussion / pending works/Material exit	interim discussion / pending works/Material exit	interim discussion / pending works/Material exit	interim discussion / pending works/Material exit	

Step 2			Weeks								
Step 3	Activity	Tentative dates	1	2	3	4	5	6	7	8	
Step 4	Preliminary visit	10-Jun-21									
Step 5	Kick-off meeting	14-Jun-21									
Step 6	Building 1 Field study	17-Jun-21 to 24-Jun-21									
Step 7	Building 2 Field study	25-Jun-21 to 28-Jun-21									
Step 8	Post field study presentations	02-Jul-21									
Step 9	Report preparation	3-Jul-21 to 31-Jul-21									
Step 10	Closing final presentation	First week of August									

ON ENERGY EFFICIENCY


SEforALL EE HUB

PARTNERSHIP

Audit Phase

Detailed Energy Audit

Step 1	
Step 2	
Step 3	
Step 4	
Step 5	
Step 6	
Step 7	
Step 8	
Step 9	
Step 10	

INEP DTI

PARTNERSHIP

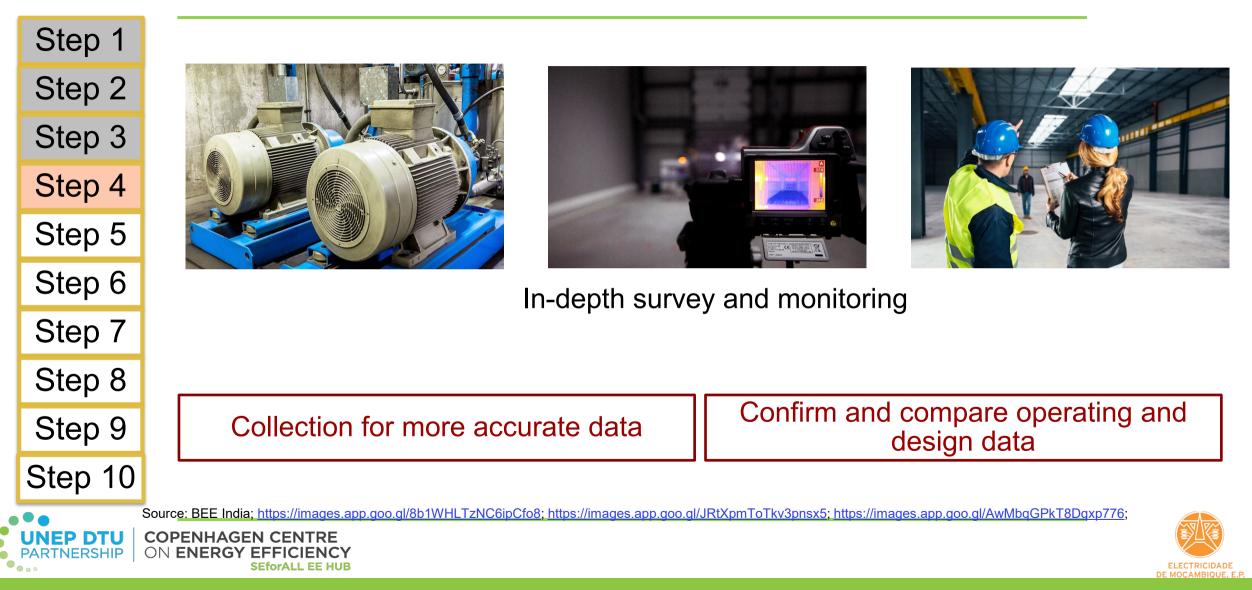
....

Data collection examples

- Geographic coordinates
 - a. Location
 - b. Latitude
 - c. Elevation
- Internal and External conditions

 Temperature
 Relative humidity
- 3. Orientation

COPENHAGEN CENTRE ON ENERGY EFFICIENCY


- 4. Building Enclosure
- 5. Insulation levels of walls, ceilings, and floors (Standard assumptions considered)
- 6. Window specification
 - a. Dimensions

SEforALL EE HUB

- b. Thermal conductivity (Standard assumptions considered)
- c. Solar Heat Gain Coefficient (SHGC) (Standard assumptions considered)

- 7. Infiltration and ventilation levels
- 8. Internal loads
- 9. Number of occupants / people density
- 10. Electronics, lighting and appliances.

Step 1 Step 2 • • Step 3 • Step 4 Step 5 • Step 6 • • Step 7 • Step 8 • • Step 9 Step 10

COPENHAGEN CENTRE

ON ENERGY EFF

UNEP DTU

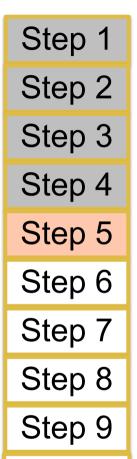
PARTNERSHIP

EA discussion with maintenance staff

- Are there any leaks in the roof?
- Are there moisture problems with the envelope of the building?
- Are there any general renovation needs for the envelope of the building? (rotten window frames, water leaks in seams of concrete plate, areas of insufficient insulation, etc.).
- Are there leaks in domestic water, waste water or heating systems?
- Are there cold or draughty spaces?
- Are any spaces too warm during the heating season?
- Are there any cooling needs?
- Are there frequent interruptions in water, heat or electricity supplies?
- Immediate repairs needed to domestic and waste water systems, heating and air-conditioning systems and electrical systems and how these needs should be taking into account when saving proposals are considered.

Source: http://www.brita-in-pubs.eu/toolbox/EA_files/EA_Quide_Axovaatio_ENG_RUS.pdf;

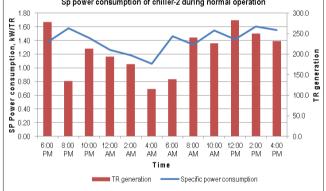
*****••••

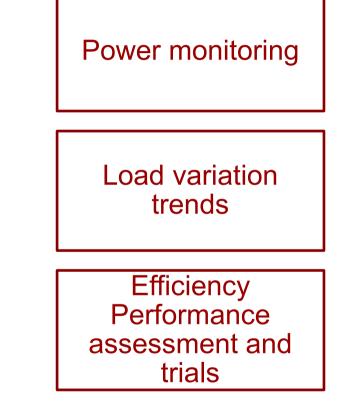

• PARTNERSHIP

ON ENERGY EFFICIENCY

SEFORALL EE HUB

1	Data survey and monitoring example	
	Design details of chiller	·S
ep 2	Description	Chiller – 1,2 &3
рЗ	Туре	Air cooled Semi Hermetic screw
4	Model	FOCS2/CA3602
	Make of compressor	Bitzer
	No of compressor in each chiller Nos.	2
	Refrigerant	R134A
	Type of Evaporator	Shell & Tube - Dx
	Make of Evaporator	Climaveneta
	Evaporator water flow m ³ /h	
	Entering water temperature (EWT) ⁰ C	15
	Leaving water temperature (LWT) ⁰ C	7
	Differential Temperature ⁰ C	8
	Air cooled condenser	
	Number of fans per chiller Nos.	16
	Input power of condenser fans, each kW	2
	Max. Ambient temperature 0C	36
	Cooling Capacity TR Power input to chiller compressor kW	246 240.7
	Max. Input power including condenser fans kW/TF	R 272.7
	Specific Energy Consumption kW/TF	R 1.11kW/TR
OPENH		





Step 10

Source: BEE India; T E R I. 2013 [Project Report No. 2013IB05];

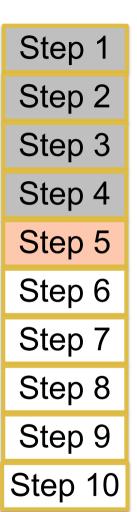
SEforALL EE HUB

ELECTRICIDADE

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Measurements

Instantaneous power measurements carried out with portable load analyser for all the motors



COPENHAGEN CENTRE

Source: BEE India; T E R I. 2013 [Project Report No. 2013]B05];

ON ENERGY EFFICIENCY SEforALL EE HUB

UNEP DTU

PARTNERSHIP

Measurement using Ultrasonic flow meter on a chilled water line

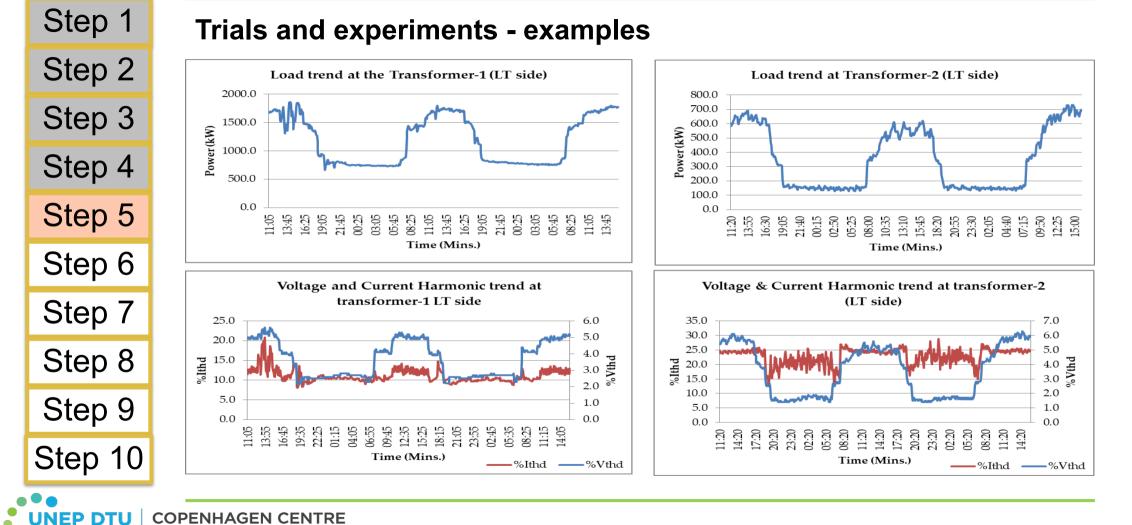
Source: BEE India; T E R I. 2013 [Project Report No. 2013IB05];

SEFORALL EE HUB

COPENHAGEN CENTRE

ON ENERGY EFFICIENCY

Step 1	Trials and ex	perimer	nts - ex	amples	5					
Step 2			Tra	Insformer lo	ading opera	ational trials				
Step 3	Deremeter		Existing so Trafo-1			scenario Trafo-2		Proposed Trafo-1		fo-2
Step 4	Parameter Description	Unit kVA	Day time 3150	Night time 3150	Day time 3150	Night time 3150	Day time 3150	Night time 3150	Day time 3150	Night time 3150
Step 5	Rated capacity No load losses Load losses	kW kW	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Step 6	BEP Avg load	kvv % kVA	<u>37.9</u> 1616	<u>29.2</u> 37.9 770	<u>29.2</u> 37.9 508	<u>29.2</u> 37.9 154	<u> </u>	<u>29.2</u> 37.9 462	<u> </u>	<u> </u>
Step 7	Peak load % Loading of trafo	kVA kVA %	1854 58.9	866 27.5	641 20.4	216 6.9	1248 39.6	541 17.2	<u>1248</u> 39.6	541 17.2
Step 8	No load losses Daily Load losses	kW kW	4.2 8.8	4.2	<u>4.2</u> 1.0	4.2 0.1	<u>4.2</u> 3.9	4.2	4.2	4.2
Step 9	Total losses Total losses	kWh kWh/day	156	74 70	62	52 13	97	59 56	97	59 56
Step 10	Total losses	kWh/day		34	14			31	13	

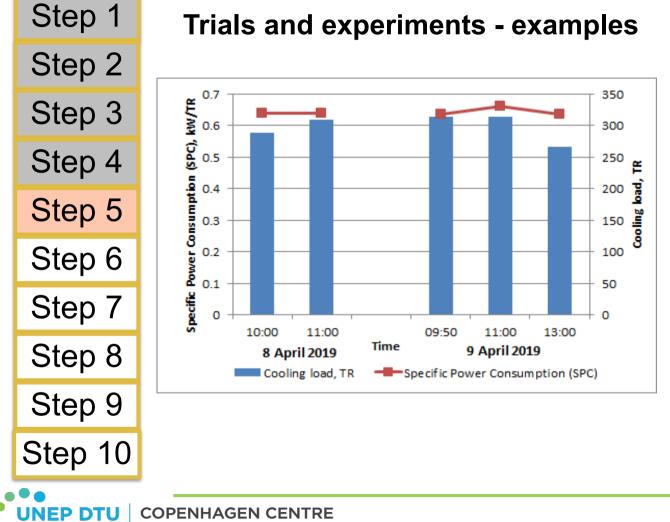


COPENHAGEN CENTRE ON ENERGY EFFICIENCY SEforALL EE HUB

Ctore 1

• PA/

UNEP DTU PARTNERSHIP

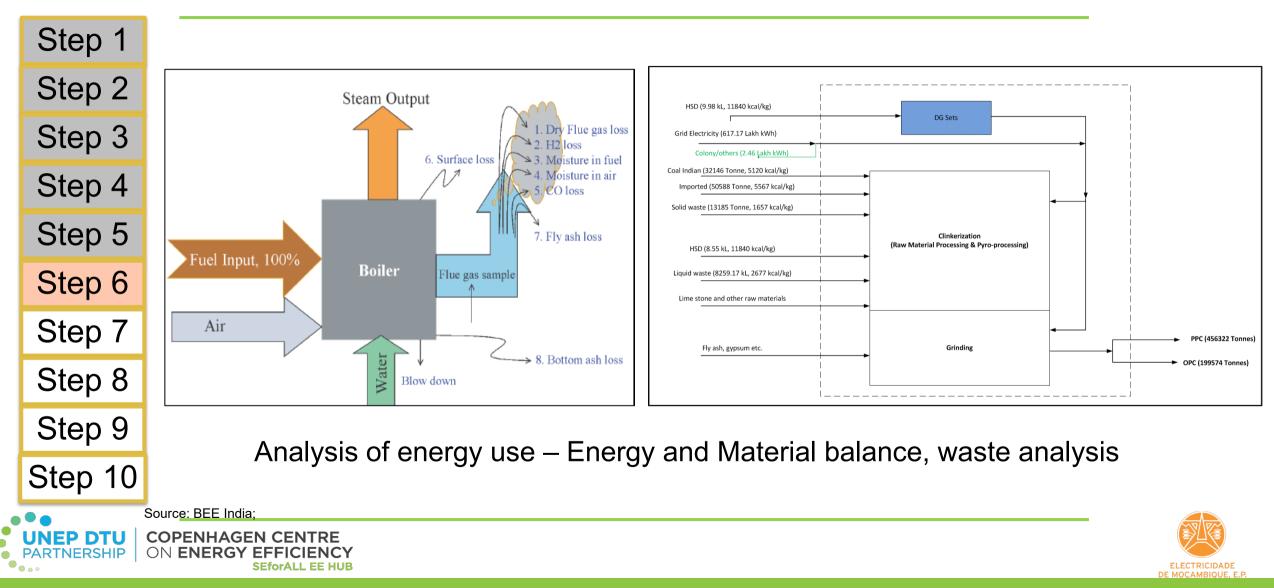

ON ENERGY EFFICIENCY

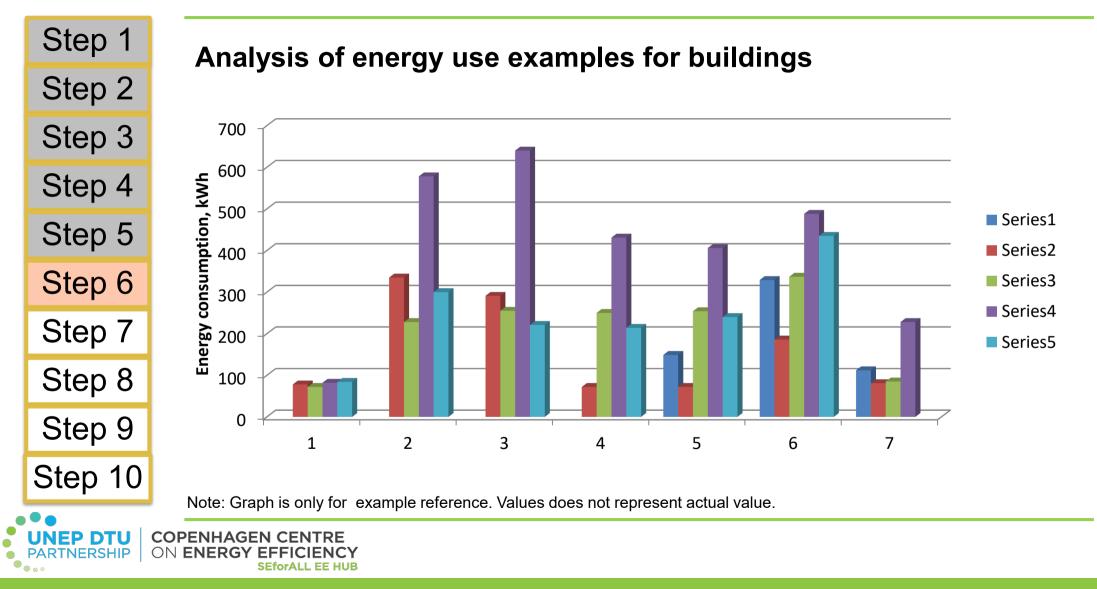
SEforALL EE HUB

PARTNERSHIP

• PA

ON ENERGY EFFICIENCY


SEFORALL EE HUB


PARTNERSHIP

• PA

Parameters	Unit	Secondary pump 4 no's (1R/3S)					
		Rated			Operat	ing	
			30 Hz	35 Hz	40 Hz	45 Hz	50 Hz
Make		Grundf os					
Туре		NB100- 250/24 5					
Flow	m3/h	160	70.6	82	91.1	101.2333	100.7
Total Head	m	16	6	8	11.5	14.5	17.5
Hydraulic power	kW	6.976	1.15	1.79	2.85	3.99	4.80
Motor power	kW	11	2.6	4.2	6.3	8.6	11.3
% motor loading	%		23.64	38.18	57.27	78.18	102.73
Motor efficiency		88.4 %					
Pump efficiency	%	71.74	50.22	48.15	51.26	52.61	48.07
Overall efficiency	%	63.42	44.40	42.56	45.32	46.51	42.50

(Sunday)

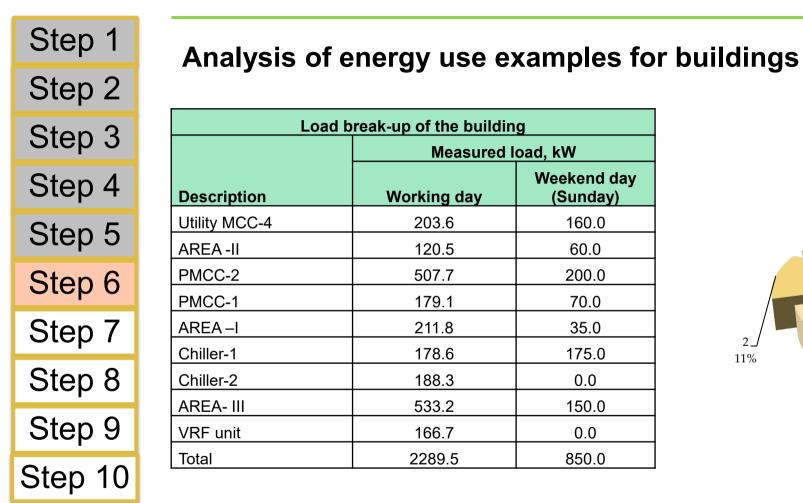
160.0

60.0

200.0

70.0

35.0

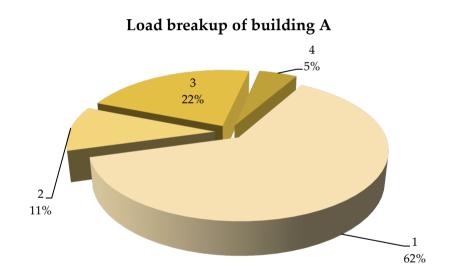

175.0

0.0

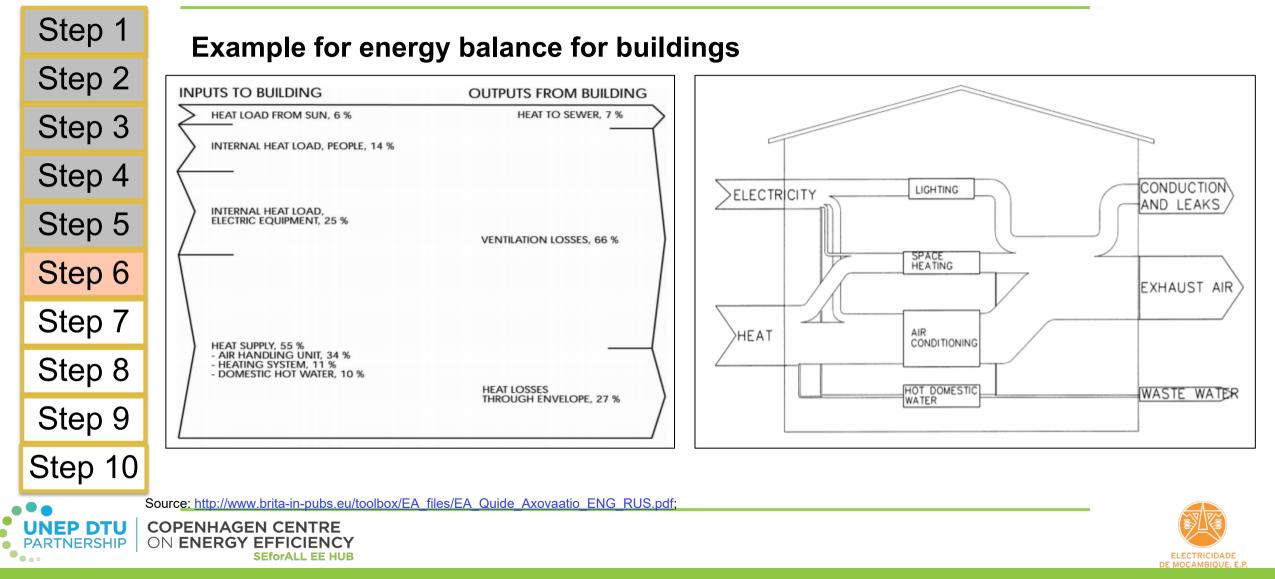
150.0

0.0

850.0


Source: BEE India:

COPENHAGEN CENTRE ON ENERGY EFFICIENCY


SEforALL EE HUB

UNEP DTU

PARTNERSHIP

Step 1	S.No Energy Conservation Measures Electrical Systems	
Step 2	1 Parallel operation of Transformer-1 & 2 2 Install capacitor banks near chillers	
	Refrigeration and Air Conditioning systems	
Step 3	2 Switch of primary chilled water pump	
•	3 Replace process chilled water pump with optimum sized pump	
Step 4	4 Bypass VFDs of AHUVFM01, AHU 521, AHUVFM6, AHUVFM5, AHU516, AHU511, CSU01	
	Fans blowers and Vacuum pumps	
Step 5	6 Avoid fresh air inclusion at the suction of the scrubber blower for Scrubber 35, 37,38, 39, Fume exhaust 3,4,7,9	
Step 6	7 Switch off Scrubber 27 B blower which is installed improperly	
	Compressed air system	
O_{10} T	8 Replace S 16 air compressor with S 14 air compressor	
Step 7	Lighting	Contact vendors/
	9 Replace the existing 2 x 36 W T8 FTLs lamps with energy efficient 2 x 16 W T8	
Step 8	LED tube lights	suppliers/technology
Step 9	Consolidate measures	providers
Step 10	Identify and develop energy	conservation opportunities
_		••
••	Source: BEE India; https://images.app.goo.gl/tndVf5Y6w8sw7hpv8; https://images.app.goo.gl/	mEUNN411RbUvp5GV9;

Brainstorm

	No. of Recommend ations	Annual Saving	f	Payback Pariod												
Type of Recommendations		Recommend Fotential, tion	Potential,			Recommend Fotential, tion,	Recommend Potential, tion,	Recommend Fotential, tion,	Recommend tion,	Recommend Potential, tion,	Recommend Fotential, tion,	Recommend Potential, tion,	Recommend Fotential, tion,	Recommend Potential, tion,	-	Years
		Rs. Lakh	Rs. Lakh													
Short term investment, payback less than I Year	10	20.12	4.98	0.2												
Medium investment, payback between 1- 3 years	5	10.06	20.7	2.1												
Long investment, payback more than 3 years	2	11.57	61.62	5.3												
Total	14	41.75	87.30	2.1												
		Cost be	nefit ana	lysis												
	Medium investment, payback between 1- 3 years Long investment, payback more than 3 years	Type of RecommendationsRecommend ationsShort term investment, payback less than I Year10Medium investment, payback between 1- 3 years5Long investment, payback more than 3 years2	Type of RecommendationsNo. of Recommend ationsSaving Potential,Short term investment, payback less than I Year1020.12Medium investment, payback between 1- 3 years510.06Long investment, payback more than 3 years211.57Total1441.75	Type of RecommendationsNo. of RecommendationsSaving Potential, Rs. Lakhf Implementa tion,Short term investment, payback less than I Year1020.124.98Medium investment, payback between 1- 3 years510.0620.7Long investment, payback more than 3 years211.5761.62Total1441.7587.30	Type of RecommendationsNo. of RecommendationsAnnual Saving Potential,f Implementa tion, Rs. LakhPayback Period, YearsShort term investment, payback less than I Year1020.124.980.2Medium investment, payback between 1- 3 years510.0620.72.1Long investment, payback more than 3 years211.5761.625.3											

SEforALL EE HUB

·••••

Cost savings = Energy savings × Per unit Energy cost

> ELECTRICIDADE E MOCAMBIQUE, E.P.

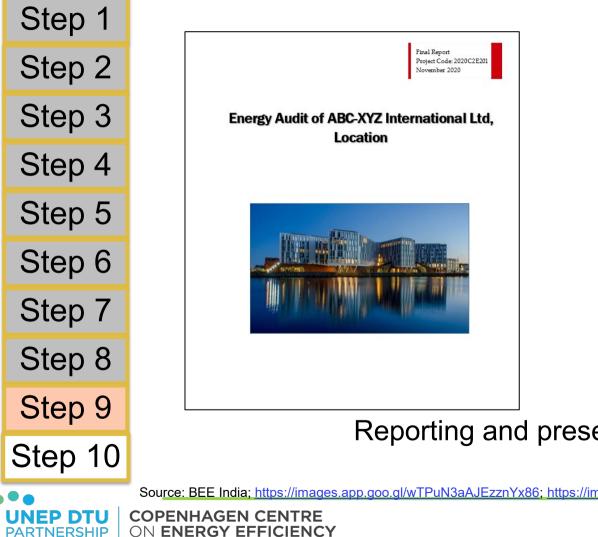
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10

Cost benefit analysis example – **Electrical systems EC measures**

S.No	Energy Conservation Measures	Annual Energy Savings Potential	Annual energy cost Savings,	Investment Cost Simple navi	
		Electricity, Lakh kWh	Value, Rs Lakh	Rs Lakh	Years
1	Parallel operation of Transformer-1 & 2	0.11	0.96	Nil	Immediate
2	Install capacitor banks near chillers	0.04	0.34	Nil	Immediate
3	Provide additional run of cable to Air compressor-2 and Chiller secondary pumps panel board	0.06	0.48	1	2.1
4	Install Active filter at different load centres	0.40	3.43	24	7.0

COPENHAGEN CENTRE

ON ENERGY EFFICIENCY


SEforALL EE HUB

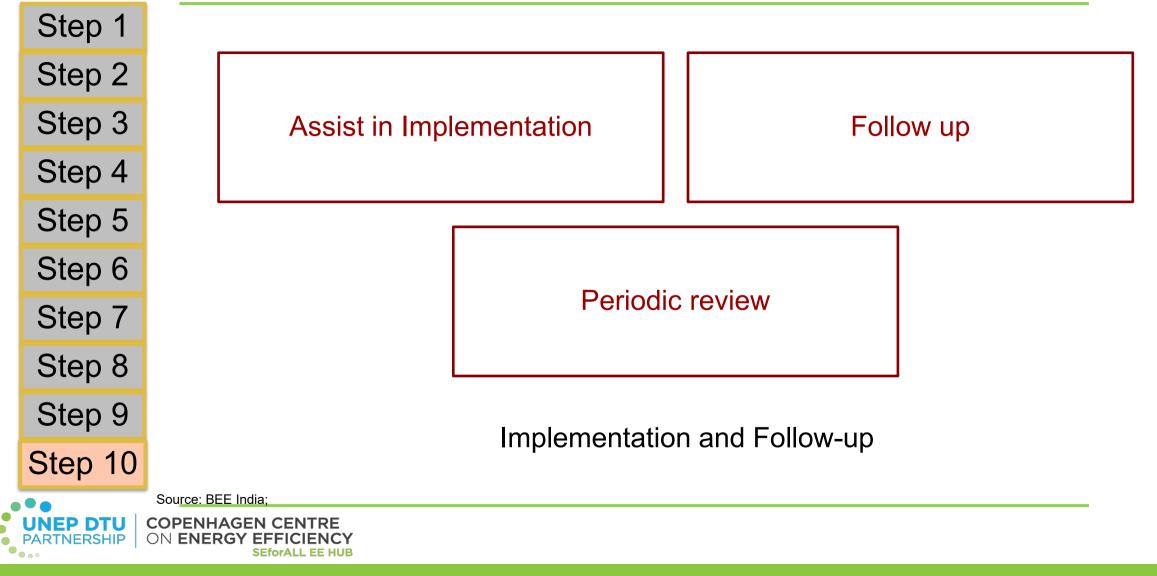
PARTNERSHIP

*****••••

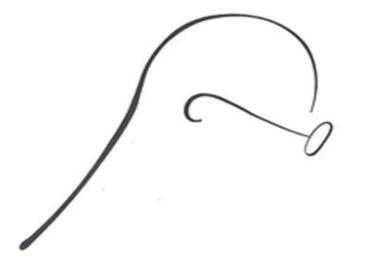
Step 1 Cost benefit analysis example – HVAC EC measures								
Step 2	S.No	Energy Conservation Measures	Annual Energy Savings Potential	Annual energy cost Savings,	Investment, Cost	Simple payback period		
Step 3			Electricity, Lakh kWh	Value, Rs Lakh	Rs Lakh	Years		
Step 4	1	Switch off primary chilled water pump	1.10	9.34	Nil	Immediate		
Step 5	2	Replace process chilled water pump with optimum sized pump	0.17	1.43	1.5	1.05		
Step 6	3	Bypass VFDs of AHUVFM01, AHU 521, AHUVFM6, AHUVFM5,	0.02	0.20	Nil	Immediate		
Step 7		AHU516, AHU511, CSU01 Avoid leakage of cold supply air via						
Step 8	4	parallel connected stand-by systems for S16/TF/VAU 15A ,B	0.32	2.70	Minimal	Immediate		
Step 9		and S16/TF/VAU13A,B Technology upgradation to						
Step 10	5	Electronically Commutated (EC) fan motors for the AHUs	0.96	8.14	37.62	4.6		
••								

SEforALL EE HUB

. • • • • •


Reporting and presentation to the top management

Source: BEE India: https://images.app.goo.gl/wTPuN3aAJEzznYx86: https://images.app.goo.gl/TXswSTaHbZKuAvQ57:



Post Audit Phase

Detailed Energy Audit

ELECTRICIDAD

Be the change you want to see in the world

Thank You

Email: rradu@dtu.dk

List of references used

Slide: Building types. Picture references link

- Residential: https://images.app.goo.gl/wTyoGqCzZFiJNtYC9
- Educational: https://images.app.goo.gl/Pw641u3w7ckAjYZ17
- Healthcare: https://images.app.goo.gl/tgke3QWJXQSi8SSU9
- Business: <u>https://images.app.goo.gl/Fq5dFSbK3B3Rd7p1A</u>
- Industrial: <u>https://images.app.goo.gl/MtTxPfTbvji1jqWS9</u>
- Storage: https://images.app.goo.gl/3yDckhpoW5835ZYi9

