Energy Efficiency Training – Mozambique

Rahul Raju Dusa Senior Expert

Thursday, 26 November 2020

Scheduled Topics

Day	Module	Торіс
12 November 2020	1.1	What is Energy Efficiency
16 November 2020	1.3	EE Strategic Planning – Part 1
19 November 2020	1.4	Energy Audit and Management
24 November 2020	2.2	Energy Audit and Management for Buildings
26 November 2020	2.5	Energy Efficiency - HVAC systems

Email: rradu@dtu.dk

Energy Efficiency - HVAC

Part 1

What ?

What is HVAC system

Heating Ventilation and Air Conditioning System

What is HVAC system

Heating Ventilation and Air Conditioning system components Mixed-air plenum and outdoor air Air filters Supply fan Exhaust fan Outdoor air intake control Self contained Heating and Ducts Terminal devices Return air system heating or cooling cooling coils unit Humidification and Cooling tower **Boiler** Control system Chiller units dehumidification equipment **COPENHAGEN CENTRE** UNEP DTU ON ENERGY EFFICIENCY PARTNERSHIP SEforALL EE HUB

Why ?

Why HVAC system?

Energy efficiency investment in buildings by subsector and end use, 2017

Number of energy conservation proposals

- Payback period = Total investment / Annual Energy Savings.
- Short term (< 1year); Medium term (1-3 years); Long term (>3 years)

*Note: Representing climatic zones – Hot and Dry/Warm and Humid/Composite/Moderate/Tropical

Representing building types Educational, Institutional, Assembly Business, Industrial, Storage, Merchantile

Area-wise share of energy savings

*Note: Representing climatic zones - Hot and Dry/Warm and Humid/Composite/Moderate/Tropical

Representing building types Educational, Institutional, Assembly Business, Industrial, Storage, Merchantile

Area-wise share of energy cost savings

*Note: Representing climatic zones – Hot and Dry/Warm and Humid/Composite/Moderate/Tropical

Representing building types Educational, Institutional, Assembly Business, Industrial, Storage, Merchantile

When and Where ?

When and where do we need HVAC systems

When and where do we need HVAC systems

Comfort air conditioning (20°C-25°C)

Process cooling – chilled water system (8°C-10°C)

Brine systems (sub-zero applications)

How?

How?

How HVAC system works ?

How we assess energy efficiency performance ?

How to save energy ?

How HVAC system works?

Types – cooling and air conditioning

Vapour compression system – Heat transfer loops

Air cooled system (small capacities, D/X type)

Source: BEE India:

COPENHAGEN CENTRE

ON ENERGY EFFICIENCY

SEFORALL EE HUB

UNEP DTU

PARTNERSHIP

....

Vapour compression system – Air cooled system (small capacities, D/X type)

Vapour compression system – Heat transfer loops

Air cooled system

Source: Trane air cooled chiller UNEP DTU | COPENHAGEN CENTRE PARTNERSHIP | ON ENERGY EFFICIENCY SEforALL EE HUB

Vapour compression system – Heat transfer

loops

. • • • • •

ELECTRICIDADE

Vapour compression system

Vapour compression system

Comparison of different types of vapor compression systems

Parameters	Reciprocating	Centrifugal	Screw
1.Refrigeration temp. Range	+7 to -30°C	+7 to 0°C	+7 to -25°C
(Brine/water)			
2.Sp. Power consumption			
Air conditioning	■ 0.7–0.9 kW/TR	■ 0.59–0.63 kW/TR	■ 0.65–0.7 kW/TR
 Sub zero temp. 	■ 1.2–2.5 kW/TR		■ 1.25–2.5 kW/TR
3.Refrigerant	R ₁₁ , R ₁₂₃ ,	R ₂₂ , R ₁₂	R ₂₂ , R _{134A} Ammonia
*(For complete list)	R _{134A} Ammonia		
4.Typical single unit capacity			
 Air conditioning 	Upto 150 TR	■ 250 TR & above	■ 50-250 TR
 Sub zero temp. 	■ 10-50 TR		■ 50-200 TR
PARTNERSHIP ON ENERGY EFFICIENCY SeforAll EE HUB			

Vapour Absorption system

Types of VAM

Parameter	Single	Double	Half	Triple	Single (Ammonia
Refrigeration temp (⁰ C)	Above 6 ⁰ C				Upto -33 ⁰ C
Energy input (Heat)	Steam/Hot Water/Hot Oil/Direct fired	Steam/Hot Water/Hot Oil/Direct fired		Steam/Hot Oil/Direct fired	Steam/Hot Water/Hot Oil
Min heat input temp. (⁰ C)	85	130	55	190	85
Energy to TR ratio (kcal/TR)	5000	2575	7500	2000	4615
Refrigerant	Pure water				Pure Ammonia
Absorbent	Water-LiBr solution				Ammonia – LiBr solution
Air conditioning	≥30	≥30	≥30	≥50	≥30

VCM vs VAM

	VCM	VAM
Energy input	Electricity for compressor motor.	Electricity for two small circulating pumps only. Primary input heat energy
COP	4 to 5 for AC applications	Low 1.1 (for 2-stage LiBr machines)
Heat rejection factor	1.2	2.5 (very high – higher CT and pump capacity required)
Life span	Relatively high	Relatively low (LiBr is corrosive in nature)

Use VAM only if you have waste heat or cheaper fuel source

Evaporative cooling

Simple solar thermal system

Boilers (gas, electrical, oil/diesel, etc.)

Solar thermal + boiler integrated system

Heat pumps

Source: https://images.app.goo.gl/vDavAimQhbTCKdcD6; https://images.app.goo.gl/wkreCM6XgTJSeucX8;

Electrical resistance heaters

Types - Ventilation

Centrifugal

Axial

Paddle Blade (Radial blade)	Forward Curved (Multi-Vane)	Backward Curved	Tube Axial	Vane Axial	Propeller

Centrifugal			Axial		
Radial	High pressure / Medium flow	Industrial applications	Propeller	Low pressure, high flow	Air circulation, ventilation, exhaust
Forward curved	Medium pressure, high flow	Low pressure HVAC, packaged units, clean environment	Tube-axial	Medium pressure, high flow	HVAC, exhaust systems, ovens
Backward curved	High pressure, high flow	HVAC, industrial applications	Vane-axial	High pressure, medium flow	High pressure applications, HVAC systems

Source: BEE, India

SEforALL EE HUB

Types - Pumps

Source: BEE. India

COPENHAGEN CENTRE

ON ENERGY EFFICIENCY

SEFORALL EE HUB

UNEP DTU

PARTNERSHIP

.....

Types – Cooling towers

How we assess efficiency performance?

Measurements of HVAC systems

SEforALL EE HUB

• PA'

eTraining - Enhancing Energy Efficiency (EE) in Mozambique

The cooling effect of refrigeration systems is measured in Tonnes of Refrigeration (TR)

A ton of refrigeration is defined as quantity of heat to be removed in order to form 1 ton of ice in 24 hours when the initial temperature of water is 0°C.

1 TR = 3024 kcal/hour = 3.51 kW = 12,000 BTU/hour

Efficiency ratios

Coefficient of Performance COP = $\frac{Useful \ refrigerating \ effect \ or \ heat \ removed \ (kW)}{Net \ energy \ supply \ from \ external \ sources \ (kW)}$

Energy Efficiency Ratio EER =
$$\frac{Useful \ refrigerating \ effect \ (\frac{BTU}{hour})}{Work \ done \ (W)}$$

Specific Power Consumption SPC =
$$\frac{Power \ consumption \ (kW)}{Refrigeration \ effect \ (TR)}$$

$$1 \text{ TR} = \frac{12}{Energy \, Efficiency \, Ratio \, (EER)} = \frac{3.516}{Coefficient \, of \, Performance \, (COP)}$$

ELECTRICIDADE

Chiller

TR = (flow rate (kg/h) x specific heat (kcal/kg⁰C) x diff. Temp °C)/3024 **Cooling coil**

TR= (air flow (m³/h) X density (kg/m³) X diff. H (k.cal x kg))/3024

- Screw chiller
- Chilled water flow rate
- Inlet water temperature
- Outlet water temperature
- Refrigeration capacity

- : 250 TR
- : 42 lps
- : 12.2°C
- : 7.2°C

$$\frac{42 \times 3600 \times 1 \times (12.2 - 7.2)}{3024} = 250 \, TR$$

Power consumption

DTU

PARTNERSHIP

: 403.2 kW

Specific power consumption

COPENHAGEN CENTRE

ON ENERGY E

$$:\frac{403.2}{250}\frac{kW}{TR} = 0.62\frac{kW}{TR}$$

Cooling load estimation

- Small office cabins 0.1 TR/m²
- Medium size office 0.06 TR/m²
- Large multi-storeyed office 0.04 TR/m²

Note: for indicative purpose only. Cannot be taken as a basis for any investment grade activities.

eTraining - Enhancing Energy Efficiency (EE) in Mozambique

Pump efficiency

Pump Efficiency =

$$\frac{Hydraulic Power, P_h}{Power Input to the pump shaft} X100$$

Hydraulic Power, P_h (kW) = Q X (Hd – Hs) X ρ X g/1000

Q = Volume flow rate (m^3/s)

- ρ = Density of fluid (kg/m³)
- g = Acceleration due to gravity (m/s^2)
- Hd = Discharge pressure (meter)
- Hs = Suction pressure (meter)

Power Input to the pump shaft = Drive input power X Motor efficiency,%

Pump efficiency

Pump η = 80%

Pump performance curve

 $Q = 21.4 \text{ m}^3/\text{h},$

H = 61.6 m

P = 5.2 kW

Pump efficiency = 73%

Fan & Blower performance testing

Fan & Blower performance testing

 $\rho_{2=}\rho_1 \times \frac{T_1}{T_2} \times \frac{P_1}{P_2}$

ρ: Density, kg/m³
 Ρ: Pressure, mm Wg (kg/m²)
 Τ: Temperature, Kelvin

```
Suffix -1 represents parameters at NTP
```

 ρ_1 = 1.29 kg/Nm³ P_1 = 1 bar = 10330 mm wg T_1 = 0 °C = 273 K

Suffix – 2 represents measured parameters at sample point

Velocity $V = C \times \frac{\sqrt{2 \times g \times h}}{\rho}$

Where, C: Pitot factor g: Acceleration due to gravity, 9.81 m/s² h: Dynamic pressure, mm Wg (kg/m²) r: Density at sample point, kg/m³

If the inlet side is not ducted, then the velocity can be obtained directly by using an Anemometer.

Fan & Blower performance testing

COPENHAGEN CENTRE

ON ENERGY E

Shaft Horse Power (SHP), kW = Motor input power, kW x η motor

 $(\eta \text{ motor} = \text{Efficiency of motor})$

Fan efficiency $\eta = \frac{AHP}{SHP}$

Cooling tower performance testing

Cooling tower performance testing

$$Range = T(hot) - T(cold)$$

$$Approach = T(cold) - T(wet bulb)$$

$$Effectiveness = \frac{Range}{Range + Approach}$$

$$Evaporation loss \left(\frac{m3}{hr}\right)$$

$$= 0.00085 \times 1.8 \times circulation rate \left(\frac{m3}{hr}\right)$$

$$\times (Tin - Tout)$$

AHU Performance testing

ELECTRICIDADE

AHU / package / DX unit performance testing

: 21665 m³/h (6.02 m³/s)

- Entering air : 24.2°DBT, 17.2 °C WBT, 51.5% RH
- Entering air enthalpy : 52 kJ/kg
- Leaving air : 14.0°DBT, 12.5 °C WBT, 85% RH

2

- Leaving air enthalpy :
- Entering air density

: 38 kJ/kg : 1.05 kg/m³

Tons of refrigeration

$$21665 \times 1.05 \times \frac{(52-38)}{(3024 \times 4.18)} = 25.2 \ TR$$

AHU / package / DX unit performance testing

Heat pump performance testing

$$COP = \frac{Q \text{ useful heat}}{Q \text{ electric}}$$

COPENHAGEN CENTRE

ON ENERGY EFFICIENCY

SEforALL EE HUB

FD DTU

PARTNERSHIP

• PA

If a heat pump releases 4 kW of heat and consumes 1 kW of electric power then

$$COP = \frac{4kW}{1\ kW} = 4.0$$

Boiler efficiency(η) = $\frac{Heat \ output}{Heat \ input} \times 100$				
$= \frac{Heat in steam output (kcals)}{Heat in fuel input (kcals)} \times 100$				
$=\frac{Ms\times(Hs-Hf)}{Qc\times GCV}\times 100$				
Example:				
$\frac{6000\frac{kg}{h} \times (662 - 32)\frac{kcal}{kg}}{100 - 63.9\%}$				
$\frac{1200 \frac{kg}{h} \times 4930 \frac{kcal}{kg}}{1200 \frac{kg}{h} \times 4930 \frac{kcal}{kg}}$				

Parameters to be monitored:

- Quantity of steam generated per hour (**Ms**) in kg/h
- Quantity of fuel used per hour (**Qc**) in kg/h
- Working pressure (in kg/cm²(g)) and steam temperature (° C), corresponding enthalpy (Hs) in Kcal/kg
- The temperature of feed water (°C) and corresponding enthalpy (Hf) in kcal/kg
- Type of fuel and gross calorific value of the fuel
 (GCV) in kcal/kg of fuel .

How to save energy?

EE measures – air conditioning and **refrigeration**

- Follow best energy labelling standards available
- User of inverter integrated products.
- Maintenance of heat exchanger surfaces (evaporator, condenser, cooling coils)
- Matching capacity to system load
- Capacity control
- Chilled water storage

COPENHAGEN

EE measures – air conditioning and refrigeration

- Economic insulation thickness cold insulation
- Adoption of roof coatings/false ceiling/sun control films
- Adoption of variable air volume (VAV's)/air curtains
- Adoption of pre-cooling fresh air / optimum no. of air changes
- Reducing heat loads in conditioned space
- Heat recovery units and recuperators

EE measures – air conditioning and

refrigeration

Capacity control types for vapour compression systems

Parameters	Reciprocating	Centrifugal	Screw
Capacity controls	■ on/off (small)	 Inlet guide vane (IGV) 	Slide valve
	 Unloading of cylinders 	 Variable speed drive with IGV 	 Variable speed drive Suction throttling
Typical COP at part load upto 50%	Reduces at part load	Reduces at part load	Improves by 15 – 20%

EE measures – air conditioning and refrigeration

- Least count of thermocouples to be used 0.1°C
- In general,
- chilled water flow 0.68 m³/h per TR (3 gpm/TR)
- Condenser water flow 0.91 m³/h per TR (4 gpm/TR)
- A reduction of 0.55°C temperature in water returning from the cooling tower reduces compressor power consumption by 3%.
- A 1°C raise in evaporator temperature can help to save almost 3% on power consumption
- Lowest possible cooling tower water should be passed through chillers
- Leaving water temperature (Evaporator) should be monitored (most of the cases)

EE measures – air conditioning and refrigeration

EE measures – Pumps, Fans and blowers

- Avoid oversizing
- Change of impeller by high efficiency impeller
- Replacing with high efficiency equipment
- Impeller de-rating (by a smaller dia impeller)
- Speed reduction by pulley dia change (for fans and blowers)
- Options for energy efficient flat belts in place of V-belts (for fans and blowers)
- Adopting Inlet guide vanes in place of damper control (for fans and blowers)
- Minimizing system resistance and pressure drops
- Variable speed drive / variable speed fluid coupling application

EE measures – Fans and blowers

Damper change

Inlet Guide Vanes

Control mechanisms

EE measures – Fans and blowers

Centrifugal Fans	Peak Efficiency Range		
Airfoil, backward curved/inclined	79-83		
Modified radial	72-79		
Radial	69-75		
Pressure blower	58-68		
Forward curved	60-65		
Axial fan			
Vanaxial	78-85		
Tubeaxial	67-72		
Propeller	45-50		

EE measures - Heating

- Avoid electric resistance heaters
- If electricity is the only choice, heat pumps are preferable in most climates - they easily cut electricity use by 50% when compared with electric resistance heating
- Insulation of pipes and equipment
- Installation of thermostatic regulators on radiators
- Install balancing valves
- Energy metering and monitoring

Source: https://www.unece.org/fileadmin/DAM/energy/se/pdfs/geee/study/Final_Master_file - March_11_final_submission.pdf:
UNEP DTU
COPENHAGEN CENTRE
ON ENERGY EFFICIENCY
SEforALL EE HUB

EE measures - Heating

Boilers

- Optimal stack temperatures
- Encourage feed water preheating (economizer, solar thermal or heat pump integration)
- Avoid incomplete combustion
- Excess air control
- Minimize surface radiation and convection losses
- Use of condensing boilers

Source: https://www.unece.org/fileadmin/DAM/energy/se/pdfs/geee/study/Final_Master_file - March_11_final_submission.pdf;

Boilers (residential and commercial buildings)

Old low efficiency	Mid-efficiency	High – efficiency		
Natural draft	Exhaust fan controls for combustion air and gases	Condensing flue gases in second heat exchanger for extra efficiency		
Heavy heat exchanger	Electronic ignition	Sealed combustion		
56% - 70% AFUE	Compact and light weight	90% to 98.5% AFUE		
	Small dia flue pipe			
	80%-83% AFUE			

Case studies

Part 2

eTraining - Enhancing Energy Efficiency (EE) in Mozambique

Case 1: Adopting VRF systems

Background :

- About 10 D/X duct type individual ACs with total capacity of 55.5TR installed.
- Very old and deteriorated condition.

Recommendation :

• Replace with VRF systems

```
Savings:
Annual energy savings for just 10 hours of daily operation : 59103 kWh
Payback : < 1 year
```


Case *2: Chiller operations with VFD

Facility description

Parameter	Unit	Details
Make		TRANE
TYPE		Helio-rotory compressor
Model		RTHD UC2U (C2F2F3)
Capacity	TR	250
Refrigerant	-	R-134 A
Chilled water flow	m³/hr.	Min: 90; Max: 403.2 (3 pass
		evaporator)
Chilled water inlet / outlet	O ⁰	12 / 6.5
temperature		
Condenser water flow	m³/hr.	Min: 79.2; Max: 385.2 (2 pass
		evaporator)
Rated power	kW	168

Case 2: Chiller operations with VFD

Hourly energy consumption trend (kWh/hour) for Chiller #1 and #2 for 24 hours duration.

Case 2: Chiller operations with VFD

Specific Power Consumption (SPC) and Cooling load details comparison of Chiller #1 (VFD) and Chiller #2 (non-VFD)

Case 3: Optimize cooling tower operations

Provide VSD for main cooling tower fans and operate with fans drive with cooling tower leaving water temperature

Background : Cooling tower fans operated at full speed irrespective of climatic condition (ambient temperature) and cooling tower leaving water temperature. <u>Set cut-off point</u> at 24^oC.

Particulars	Unit	Value	
Cooling tower outlet water	00	29.7	
temperature			
Cooling inlet water temperature	0 ⁰	33	
Ambient wet bulb temperature	OO	25.83	
Range	OC	3.3	
Approach	OO	3.87	
Cooling tower effectiveness	%	46.0	
Circulation water flow rate	m3/h	429	
Total Heat Rejection	TR	468	
CT fan Power	kW	29.3	

Case 3: Optimize cooling tower operations

Provide VSD for main cooling tower fans and operate with fans drive with cooling tower leaving water temperature

Recommendation:

- Cut-off set point to be regularly changed w.r.t WBT.
- Install VSD for CT fans with CWLT feedback for dynamic control.

Savings :

0.43 Lakh kWh/annum ; 0.5 year payback

Case 4: Rectify system flows and pressures

- 2 Chillers x 1000 TR (#4 & #6) in parallel operation
- VFD for compressor, CHW and CW pumps
- Online flow meters (ultrasonic) available yet deviation from design parameters.
- One CHW pump with VSD, while another pump with DOL operation.
- Even the orientation/indication of pumps in DCS logic system is indicating wrongly...
- Rectified cooling water valves, which was earlier throttled to chiller #4.
- Post investigation, team had reduced the set point (2 PSI on each trials) for Cooling water pumps to optimize the pressure drop across the system and thereby improve operational efficiency.

Case 4: Rectify system flows and pressures

ON ENERGY EFFICIENCY

SEFORALL EE HUB

PARTNERSHIP

Particulars	Unit	Before	After
Chiller #4			
SPC	kW/TR	0.617	0.444
COP	kW/kW	5.69	7.9
Chiller #6			
SPC	kW/TR	0.533	0.459
COP	kW/kW	6.59	7.65

Annual energy savings achieved : 6.3 Lakh kWh

Case 5: Use VAM

- Facility had 2 x 1000TR centrifugal chillers and 2 x 545 TR VAM
- Hot water source at 160-180 °C available.
- Assessments were done and recommended to prioritize VAM operations to cater to the cooling loads.
- The chillers used as back-up.

Annual energy savings achieved : 14.4 Lakh kWh

Case 6: Stop using VAM

Background :

- 500 TR VAM consuming bio-diesel 160 170 lph (\$ 0.7 to \$ 0.8 per litre) for
 - Going green / Reliability / Challenges in getting approval for higher contract demand at the commissioning stage.
- 35 to 40 % loading

Recommendation :

DTU

COPENHAGEN CENTRE

ON ENERGY

- 250 TR two compressor water cooled screw chiller to be installed.
- For green energy opt for RE certificates, wheeling PPA agreements of RE or install solar panels.

Savings: **\$ 0.27 million per annum worth fuel and power savings; Payback: 0.5 year**

Case 7: Technology upgradation - AHU

Technology up gradation to Electronically Commutated (EC) fan motors for the AHUs

<u>Background</u>

- Plugged/pulley type driven fan motors at present with VFD.
- Frequencies set either auto or manual mode operation
- Based on user side pressure requirements
- <u>Recommendation</u>
 - Convert to direct coupled DC based brushless EC motor driven fans.
 - Improved performance, higher efficiency, compact and reliable.

Case 7: Technology upgradation - AHU

Conventional motor-fan with VFD

EC motors

Case 6: Technology upgradation - AHU

				Actual Before		Actual After		Souting
5 NO.	And Name	Rating KW	After Rating KW	KW	CFM	KW	CFM	Saving
1	Ahu-4	15	12	9.38	7791	4.64	7810	51%
2	Ahu-1	15	12	9.22	11456	5.06	11520	45%
3	Ahu-8	7.5	6	5.96	5456	2.36	5490	60%
4	AHU 2	11	15	9.5	23150	5.31	23985	44%
5	AHU 3	7.5	6.8	6.22	18207	4	18613	36%
6	AHU 5	15	15	12.81	27968	8.5	25580	34%
7	AHU 6	15	15	15.01	18681	9.3	18735	38%
8	AHU 7	11	12	5.52	8132	2.75	8875	50%
9	AHU 9	11	10.2	7.06	8213	3.58	8522	49%
10	QA 12	11	10	10.09	9667	4.69	10894	54%
11	Warehouse-G	15	15	12.06	17555	6.34	17980	47%
12	Warehouse-F	15	15	13.1	15993	6.86	16025	48%

Case 7: Insulation

Background :

- 7^oC temperature rise between generation and user end.
- Close to 25 TR loss.

Recommendation :

• Tank and pipeline insulation to be maintained.

Savings:

\$ 27000 per annum ; Payback: 1 year

Case 8: Air loss through stand-by blowers

Annual energy Savings: 0.21 lakh kWh

Payback -Immediate

Case 9: Boiler performance improvement – clean tubes

Background :

- 3 TPH, 10.35 kg/cm² pressure rated diesel fired boiler in hotel
- Operating efficiency of 81.8% low
- Majore heat loss through flue gas (10.6%)
- Soot built up on tubes leads to poor heat transfer.

Recommendation :

• Tubes to be cleaned and stack temperature monitored on regular basis.

Savings: 26.5 kL annual diesel savings

Case 10: Use of Heat pumps

Background :

- Diesel fired boilers used for hot water generation in a hotel
- City's location weather highly suitable for heat pump installation.
- The diesel fuel high cost also supported the change.

Recommendation :

- · Heat pumps to be installed.
- Existing boiler may be used for back up

Savings: 13.5 kL annual diesel savings

Be the change you want to see in the world

Thank You

Email: rradu@dtu.dk

