

- **Policy:** To adopt and implement a building energy code.
- Project: To retrofit four public buildings, utilizing audits and benchmarking tools.

190años

Deep Dive Case Study: Mexico City

- September 2014 commitment from Mexico City gov't to:
 - Implement a building energy code
 - Retrofit public buildings
- Launch workshop for common vision March 2015
 - 100 multi-stakeholder participants including city government, federal government, businesses, finance, civil society and consulting
- Action plan underway: 4 workgroups chaired by Mexico City government staff and a local partner, managed by WRI Mexico
 - August 2015 technical workshop on building retrofits and finance
 - Recommendations on action by government and stakeholders delivered in October 2015; Actions announced at COP 21 in Dec.
 - Program implementation phase 1: January-December 2016

NFRG

FORALI

- June: energy code adopted; Dec: 4 public building audits complete
- Phase 2 ongoing: code implementation capacity building, retrofitting, additional public buildings audits

Tanya Muller, Secretary of the Environment, discussing Mexico City's leadership actions

Mayor Mancera at COP21 Buildings Day

Mexico City, Mexico

Policy: Adopt and implement energy code for private buildings *Project:* Retrofit of 4+ municipal buildings

March - August 2015: Launch and technical workshops of local BEA partnership; working groups formed

Sept 2016: Bids requested on audits of 4 public buildings. Jan 2017: Audits on buildings completed.

- Launch of city-wide energy saving challenge for large buildings
- Training programs for implementation of building energy code.
- Refinement of funding model for public building retrofits

October 2015: Working group recommendations delivered to City

June 2016: Revised construction regulations adopted, referencing technical norm with energy code for first time TODAY

April 2017: Funds committed for retrofits of 4 buildings and audits of 15 additional buildings. Target set to audit 30% of city's 2400 municipal buildings..

Defining the Project & Policy

Define Project and Policy

City: Mexico City

Sector: Buildings

Action objectives: Create a more competitive, affordable and livable Mexico City through implementing improvements in building efficiency which reduce costs and pollution.

	Policy	Project
Impact type(s):	GHGs, local pollutants, energy savings	GHGs, local pollutants, energy savings, cost savings
Fuels assessed:	Electricity, Natural gas	Electricity
Type of Action:	Implementation of new building code	Retrofitting 4 public buildings
Geographic	citywide	20% public buildings estimate
coverage:		
Status of action	Implementation phase	Implementation phase
Implementing	Public Administration of the City of Mexico	SEDEMA
organization(s):		
Implementation	2018 – 10% compliance; 2019 – 30%; 2020 – 50%	2018
period:	compliance; 2022 and beyond – 80% compliance	
Assessment period:	2018 to 2050	2018 to 2030 or longer
Type of assessment:	Ex-ante	Ex-ante
Action Description:	Decree amending, adding and repealing various	Using energy efficiency as a strategy to solve several of the
	provisions of the Federal District construction and	problems of energy consumption in public sector buildings
	building regulators	

Defining the Assessment Boundary

Policy Effects

Measures included	GHG Effects included in analysis	Not included
Solar water heating	Reduce GHG emission due to installing solar water heating	Increase/decrease GHG emissions from manufacturing activities Increase GHG emissions from installation activities Increase GHG emissions from rebound effects
Efficient heating/cooling improvements	Reduce GHG emissions due to heating/cooling efficiency improvements	Increase/decrease GHG emissions from manufacturing activities Increase GHG emissions from energy use for remodeling activities Increase GHG emissions from rebound effects
Efficient lighting	Reduce GHG emissions from reduced energy use due to efficiency improvements	Increase GHG emissions from disposal and recycling activities Increase GHG emissions form rebound effects Increase/decrease GHG emissions from manufacturing activities
Electric water pumps	Reduce GHG emissions from reduced energy use due to efficiency improvements from new pumps	Increase/decrease GHG emissions from manufacturing activities Increase GHG emissions from energy use for remodeling activities Increase GHG emissions from rebound effects
Project Effects		
Measures included	GHG Effects included in analysis	Not included
Efficient appliances	Reduce GHG emissions from reduced consumption of grid- supplied energy for lighting and computing	Increase GHG emissions from rebound effects Increase GHG emissions from installation activities Increase GHG emissions from disposal and recycling activities
Install sensors	Reduce GHG emissions from reduced consumption of grid- supplied energy use due to use of motion sensors	Increase GHG emissions from rebound effects Increase/decrease GHG emissions from manufacturing activities Increase GHG emissions from installation activities Increase GHG emissions from disposal and recycling activities

Methods and assessment

• Current phase: data collection and methodology selection

