

STANDARDS TO ACHIEVE CITY SUSTAINABILITY

WEE KEAN FONG, CARLEY CHAVARA

Agenda

- 1. Background
- 2. Overview of Assessment Standards
- 3. Using the Policy & Action Standard to track the impacts of BEA actions
- 4. Q&A session

GREENHOUSE GAS PROTOCOL

Agenda

- 1. Background
- 2. Overview of Assessment Standards
- 3. Using the Policy & Action Standard to track the impacts of BEA actions
- 4. Q&A session

GREENHOUSE GAS PROTOCOL

Purpose of this webinar

- Tools for Sustainability Webinar Series
- Objective: Learn process of conducting an impact analysis of BEA policies and project
- Today's webinar, "Standard to Achieve City Sustainability" is 1 of 4
- Objective: Review tools for policy/program analysis to be used in future webinars

Agenda

1. Background

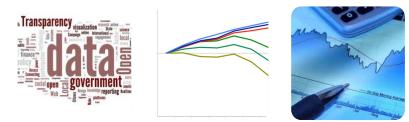
2. Overview of Assessment Standards

- 3. Using the Policy & Action Standard to track the impacts of BEA actions
- 4. Q&A session

GREENHOUSE GAS PROTOCOL

Why do cities assess and track impacts?

- Understand effects of polices/programs
- Prioritize activities
- Communicate progress towards goals
- Accountability and transparency
- Improving efforts and scaling up actions



Need for standardization

Investment & finance

Resources & knowledge

International communication

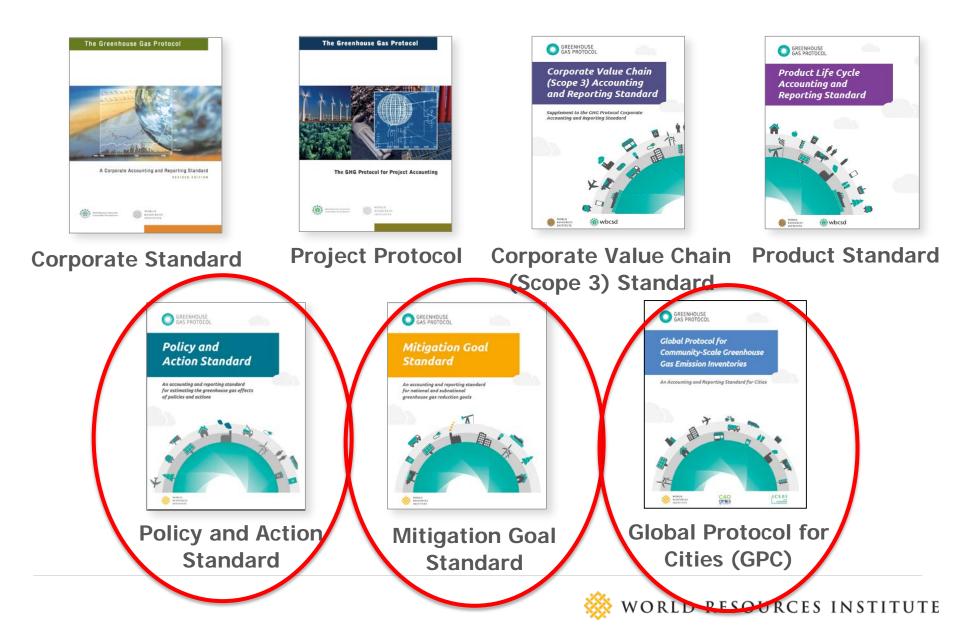
Consistent methodologies and data to monitor investment performance

Sharing methodologies, tools, data, training

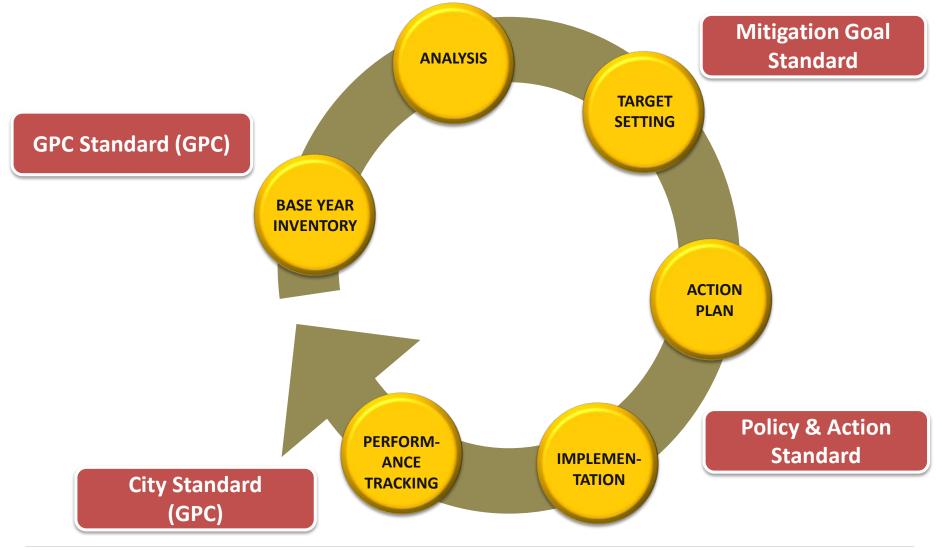
Benchmarking, experience sharing, collaboration

The Greenhouse Gas Protocol

- The GHG Protocol sets the global standard for how to measure, manage, and report greenhouse gas emissions
- Convened in 1998 by WRI and WBCSD
- Provides:
 - Greenhouse gas accounting and reporting standards
 - Sector guidance
 - Calculation tools
 - Trainings (webinar, e-learning and inperson training)
- Standards and tools available free of charge at <u>www.ghgprotocol.org</u>

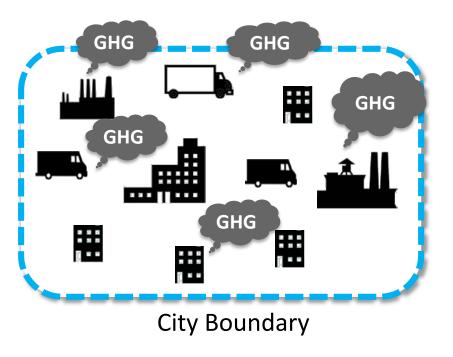


GREENHOUSE GAS PROTOCOL



Greenhouse Gas Protocol standards

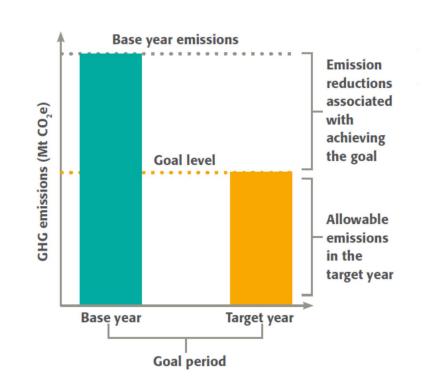
Application in low carbon cities planning and implementation



Global Protocol for Community-Scale Greenhouse Gas Emission Inventories

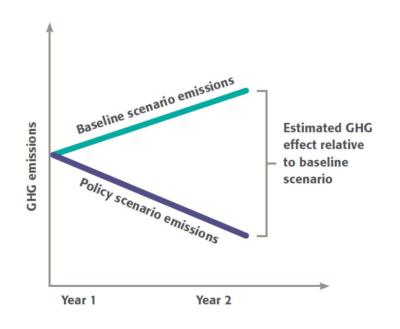
An Accounting and Reporting Standard for Cities

A standard for measuring and reporting all in-boundary and trans-boundary GHG emissions of a city


Contents of the GPC

PART I: INTRODUCTION AND REPORTING REQUIREMENTS	
1 Introduction	18
2 Accounting and Reporting Principles	24
3 Setting the Inventory Boundary	28
4 Reporting Requirements	34
PART II: CALCULATION GUIDANCE BY EMISSION SOURCE	
5 Overview of Calculating GHG Emissions	46
6 Stationary Energy	54
7 Transportation	70
8 Waste	84
9 Industrial Processes and Product Use	104
10 Agriculture, Forestry and Other Land Use	116
PART III: TRACKING CHANGES AND SETTING GOALS	
11 Setting Goals and Tracking Emissions Over Time	136
12 Managing Inventory Quality and Verification	144

A standard for designing mitigation goals and tracking progress toward meeting the goals


It sets out requirements and guidance for

- ••• Designing a mitigation goal
- ** Defining accounting methods for tracking progress
- * Calculating allowable emissions in the target year
- ** Assessing and report progress toward meeting a goal
- Assessing and reporting whether a goal has been achieved

A standard for estimating and reporting the change in GHG emissions and removals resulting from policies and actions

Additional resources

- Sample reporting template
- E-learning course
- Excel calculation tool
- Sector guidance documents
 - AFOLU
 - Energy supply
 - Residential and commercial buildings
 - Transportation
 - Waste

Agenda

- 1. Background
- 2. Overview of GHG Assessment Standards
- 3. <u>Using the Policy & Action Standard to</u> <u>track the impacts of BEA actions</u>

GREENHOUSE GAS PROTOCOL

4. Q&A session

Building Efficiency Accelerator

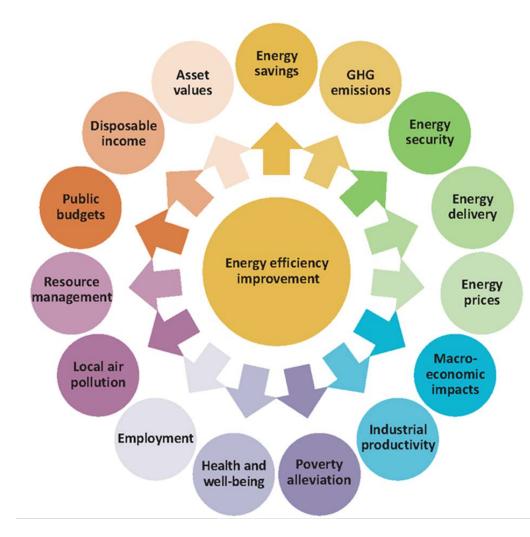
Types of Tracking Progress:

- 1. Selecting indicators & methods to track progress on BEA Actions
- 2. Methods for measuring impacts of city energy efficiency actions

Impact Estimation for BEA

- Impact estimation analyses for 7 cities
- Important to assess the potential effects of policies and projects in a relevant, consistent, and accurate way
- Process for cities:

• Potentially more guidance/resources for all cities with progress


Why tracking the GHG impacts of BEA actions?

- Measure emissions/energy savings
- Identify reduction opportunities
- Prioritize intervention strategies
- Set emission reduction goals
- Monitor progress
- Benchmark with other cities

The Multiple Benefits of Energy Efficiency (IEA)

Energy Efficient Prosperity **Energy efficiency as** a means to support economic and social development

Broader sustainable development impacts can be assessed

Category	Examples of non-GHG effects	
Environmental effects	 Air quality and air pollution (such as particular matter, ozone, carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen oxides (NO_x), lead, and mercury) Water quality, water pollution, and water scarcity Ozone depletion Waste 	 Toxic chemical/pollutants Biodiversity/wildlife loss Loss or degradation of ecosystem services Deforestation and forest degradation Loss of top soil Loss or degradation of natural resources Energy use
Social effects	Public healthQuality of lifeGender equalityTraffic congestion	 Road safety Walkability Access to energy, thermal comfort, fuel poverty Stakeholder participation in policy-making processes
Economic effects	 Employment and job creation Productivity (such as agricultural yield) Prices of goods and services (such as decreased energy prices) Cost savings (such as decreased fuel costs) Overall economic activity (such as GDP) 	 Household income Poverty reduction New business/investment opportunities Energy security/independence Imports and exports Inflation Budget surplus/deficit

© GREENHOUSE GAS PROTOCOL Policy and Action Standard

The standard helps to answer the following questions:

- What effect is a given policy or action likely to have on GHG emissions in the future?
- Is a given policy or action on track and delivering expected results?
- What effect has a given policy or action had on GHG emissions?

Purpose of the standard

- To help users assess the effects of policies and actions in an accurate, consistent, transparent, complete, and relevant way
- To help policymakers **develop effective strategies** for managing and reducing GHG emissions
- To support consistent and transparent reporting of emissions impacts and policy effectiveness

Objectives of assessing policy/action impact

- **Inform policy selection and design** by comparing policy options based on their expected GHG effects
- Evaluate policy effectiveness (and cost-effectiveness) in delivering intended results
- **Report** on GHG effects of policies and actions
- Attract and facilitate financial support for mitigation actions by estimating GHG reductions

Additionality

Policy & Action Standard

 Determine whether a policy or action results in GHG effects that are additional to what would have happened in the absence of the policy or action

Project Accounting

 Determine whether a GHG mitigation project would have been implemented in the absence of financing or incentives generated by an offset crediting program

When to use the standard?

Before policy implementation

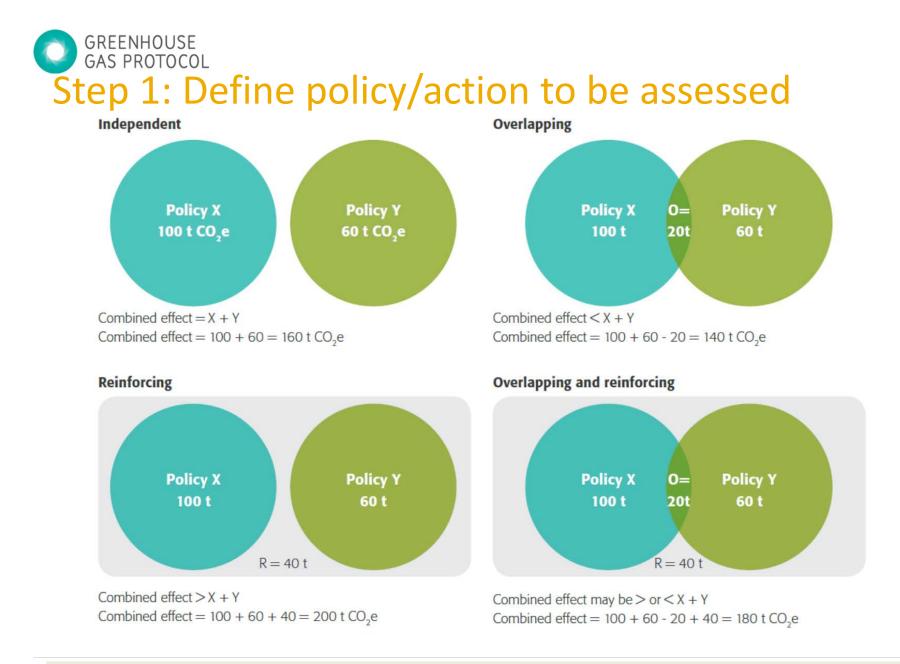
- To estimate expected future effects of a policy or action
- Ex-ante assessment

During policy implementation

 To estimate achieved effects to date, ongoing performance, and expected future effects of a policy or action

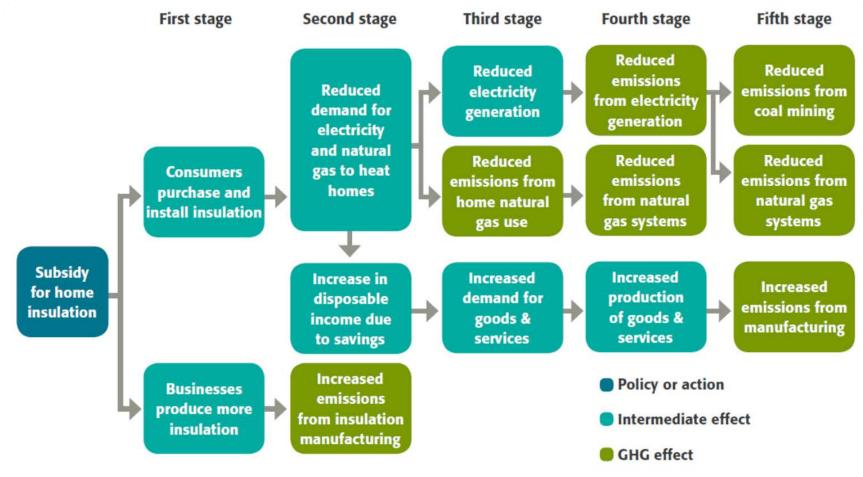
After policy implementation

- To estimate what effects have occurred as a result of a policy or action
- Ex-post assessment

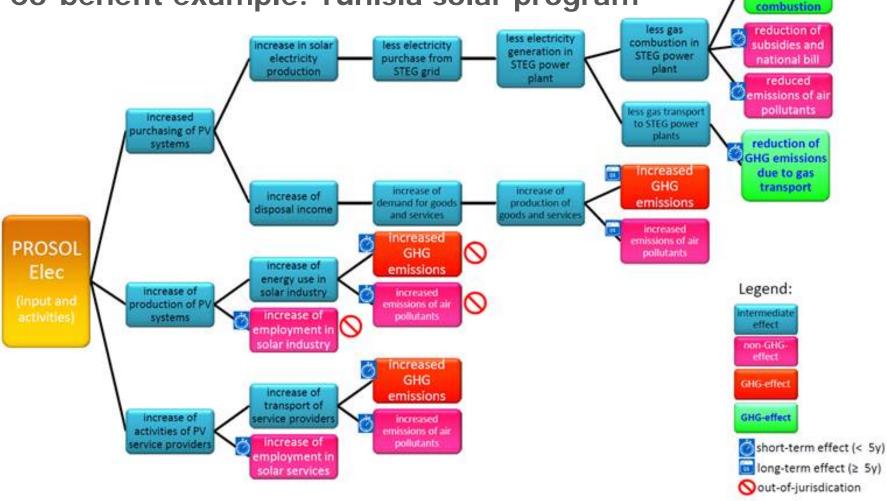


GREENHOUSE GAS PROTOCOL Steps in policy/action assessment

Overall steps	Detailed steps	Chapter
Define policy/action	Define the policy or action to be assessed; choose ex-ante or ex-post assessment	5
Idantifi offecte	Identify all potential GHG effects of the policy or action; include them in a map of the causal chain	6
Identify effects	Define the GHG assessment boundary around significant effects; identify the sources/sinks in the boundary	7
_		
	Estimate baseline emissions for all affected sources/sinks included in the boundary	8
	Ex-ante assessment: Estimate policy scenario emissions for affected sources/sinks; subtract baseline emissions to estimate GHG effect	9
Estimate effects	Identify key performance indicators; monitor performance over time	10
	Ex-post assessment: Estimate policy scenario emissions for affected sources/sinks; subtract baseline emissions to estimate GHG effect	11
	Assess uncertainty (relevant to Chapters 8, 9, 10, and 11)	12
Verify	Verify results (optional)	13
Report	Report results and methodology used	14

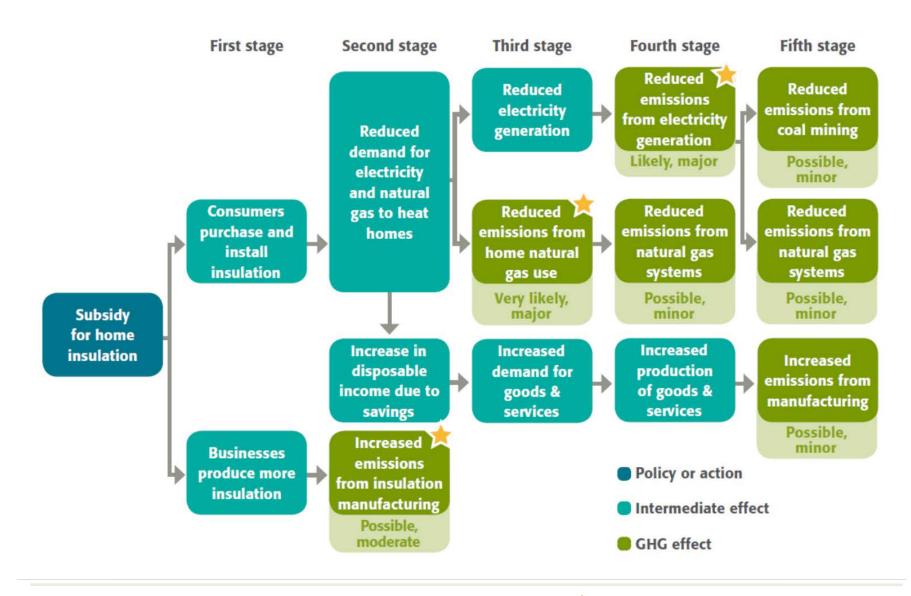

Step 2: Identify potential effects

Intended	Unintended
effect	effect
In-boundary effect	Out-of- boundary effect
Short-term	Long-term
effect	effect



Step 3: Map the causal chain

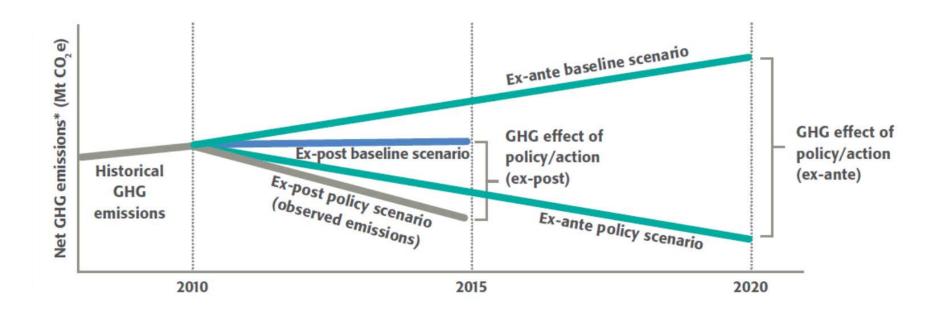
Co-benefit example: Tunisia solar program



GHG emissions due to

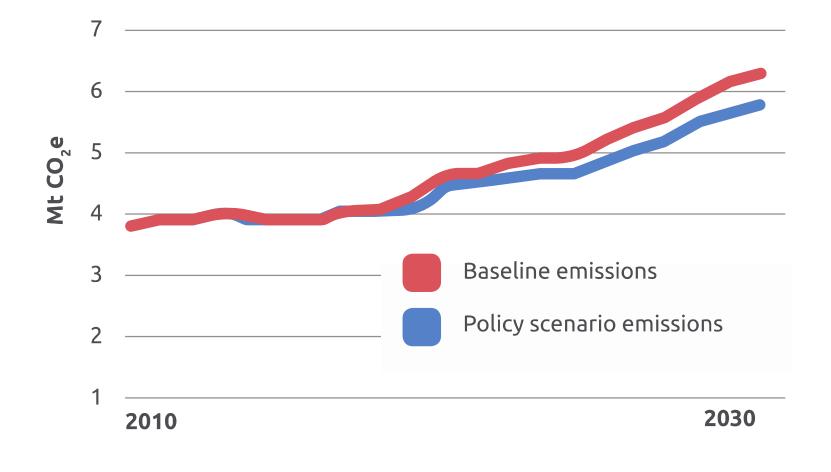
reduced

GREENHOUSE GAS PROTOCOL Step 4: Define assessment boundary



GREENHOUSE

- Ex-ante assessment: The process of estimating expected future
 GHG effects of a policy or action
- Ex-post assessment: The process of estimating historical GHG effects of a policy or action


Step 6: Estimate GHG effect

Example: Tunisia solar energy program

Step 7: Verify and Report

- Five parts to the reporting requirements and template:
 - 1. GHG assessment information
 - 2. Description of the policy or action
 - 3. Estimated change in GHG emissions and removals
 - 4. Methodology
 - 5. Optional reporting information

Monitoring plan example: Tunisia energy conservation NAMA in the building sector

Indicator or parameter (and unit)	Source of data	Monitoring frequency	Measured, calculated, or estimated (and uncertainty)	Responsible entity		
Job creation						
Number of employees in new and existing companies that provide energy services for buildings	ANME accreditation system and human resources department	Annual	Measured (Low uncertainty)	ANME		
Creation of new companies						
Number of new companies created to provide energy services for buildings	ANME accreditation system and human resources department	Annual	Measured (Low uncertainty)	ANME		
Saved energy costs for end users and saved energy subsidies for the Tunisian government						
(Energy savings by source from GHG ex-post assessment) × (Energy prices for electricity, natural gas, LPG, kerosene, wood, charcoal)	GHG ex-post assessment and ANME sources on energy prices and subsidies	Annual	Measured and calculated (Low uncertainty)	ANME		

Agenda

- 1. Background
- 2. Overview of Assessment Standards
- 3. Using the Policy & Action Standard to track the impacts of BEA actions

GREENHOUSE GAS PROTOCOL

4. <u>Q&A session</u>

BEA Webinar Series for Cities: Tools for Sustainability

- Webinar #1: Standards to Achieve City Sustainability (April 26/27)
- Webinar #2: Energy and Emissions: Mapping the Impacts (May 23)
- Webinar #3: Using Data to Measure Policy Impacts (June 27/28)
- Webinar #4: Reporting Results for Success (July 18)

GREENHOUSE GAS PROTOCOL

Thank You

Dr. Wee Kean Fong, wfong@wri.org Carley A. Chavara, carley.chavara@wri.org