

Building Policies for a Better World

Tracking Implementation of Building Energy Codes & Certification

Types of Code & Certification

July 29 2016 Dr. Peter Graham – Executive Director pg@gbpn.org

Overview

- Building Energy Codes & Certification in Context
- Types of Codes & Compliance
- Types of Certification

Building Energy Codes Context

STRATEGY

- Building Energy Efficiency Codes
- Policy Targets: Low-zero & positive energy buildings
- Integrated Planning & Design, district heating-cooling
- Building Design: Bio-Climatic, Bio-Positive, Adaptive, Resilience & integrated solar thermal & P.V.
- High-Efficiency envelope, heating & cooling technologies
- Compliance enforcement, monitoring and reporting
- Life-cycle Approach to greening the Value-Chain, labeling & MEPS
- Behavior Change

- <50% of legally req.
- US\$+50 to -\$250/MtCO₂
- <40%

Source: IPCC AR5

Types of Code & Compliance

Prescriptive:

- Set specific energy performance requirements on individual building components (i.e. walls, ceiling, insulation, ventilation and windows)
- Compliance is predominantly checked through reviewing the building design against prescribed requirements.

Simple Trade-Off:

- Specific rules on overall performance values such as U-Value to typically to allow trade-offs between elements of the building envelope such as trading off less efficient insulation for more efficient windows.
- Compliance is predominantly checked through reviewing the building design against prescribed requirements or compliance tools that help to calculate the overall mandatory performance level is being achieved. Points systems are also sometimes used where points are assigned, depending on the components used.

Types of Code & Compliance

Performance-Based:

- Typically sets an energy performance requirement for the whole building such as kWh/m2. A proposed design is run in building energy simulation software to simulate energy use, which is compared either to a reference building or to a specified target
- Compliance is commonly checked by comparing the predicted energy performance of a design with a model of energy use in a reference building of a certain type.

Outcome-Based Code:

- Requires demonstration that the actual energy use of a building in operation meets the energy performance requirements of the code. Few full-scale examples of this as yet.
- Compliance could be recognized through the awarding of energy performance certificates, or through mandatory disclosure programs.

Implementation Process

- Local governments play a key role in enforcing the building energy codes.
- Codes have become more stringent and complex over time, which can make implementation more difficult – important to keep it simple
- Compliance software can be an important tool to mainstream compliance.
- Building material testing, rating and labeling constitute an important component of any building energy code system.

Commissioning: End-ofpipe tests check for proper installation & compliant operation

- Blower-door tests (U.S. for commercial buildings; France)
- Commissioning of HVAC equipment
- Energy auditing requirements (Korea)

Energy Performance Assessment & Certification

	Australia	Canada	China	E.U.	U.S.	
Assessment system	Rating	Labeling	Rating	Certification	Benchmarking; Rating Rating	
Evaluation methodology	Rating	Rating	Rating	Rating		
Result of evaluation	Rating; Score	Rating; Score	Rating	Class; Rating	Rating; Score	
Physical product of assessment	Label	Label	Label	Label; Certificate	Label; Rating; Statement	

No international consensus on terminology or methodology.

"...overarching frameworks which govern the evaluation, comparison, and labeling of a building's energy efficiency are called "performance assessment systems".

"Performance," usually expressed as relative efficiency, refers to the responsible use of energy.

"Rating" refers to the methodology or tool used for the efficiency evaluation;

The result of such an evaluation is a "**score**". The physical product relating this score is a building "**label**" – or Certificate. Source: IMT, 2013

Basic Components

All certification systems have **6** basic components:

- 1. Quantification of Energy consumption (Measured or Simulated)
- 2. Energy Measurement Methodology (Total, Delivered or Final Energy)
- 3. Floor Area (Conditioned or Conditioned + Unconditioned) (Rentable, Gross or Net)
- 4. Building Type (New/Existing; Pubic/Private; Residential SF or MF/Non-Residential
- 5. Comparability Metric (Absolute Reference eg zero kWh/m2 or Relative to code/average etc)
- 6. End Uses (HVAC, Lighting, Plug Loads, DHW etc)

Example Rating & Disclosure: Australia

Building Policies for a Better World

Tracking Implementation of Building Energy Codes & Certification

On-Line Tools to Support Policy Development

July 29 2016 Dr. Peter Graham – Executive Director pg@gbpn.org

Online Policy Tools

Building Policies for a Better World

DATABASES & TOOLS

POLICY TOOL FOR RENOVATION

BUILDING ENERGY PERFORMANCE SCENARIOS

DATAHUB FOR EUROPE

POLICY TOOL FOR NEW BUILDINGS

RATING POLICIES

LABORATORY: PROJECTS

BUILDING ENERGY CODES PORTAL

aD

The Building Energy Codes Portal supports efficient international knowledge exchange on building energy code implementation by... Read more

Q

9

Get involved in the Laboratory

BLOG

BUILDING THE PATH TO 1.5°C: WHAT THE PARIS AGREEMENT MEANS FOR BUILDINGS & CONSTRUCTION

13-12-2015 | PETER GRAHAM | GLOBAL

The Paris Agreement on Climate Change is a historic achievement for humanity and for the Building...

Read more

THE BUILDING SECTOR'S CONTINUOUS 'VOLKSWAGEN' MOMENT

14-10-2015 | PETER GRAHAM | GLOBAL

11

A couple of weeks ago I had the privilege of catching up with one of the hero's of the VW

www.gbpn.org

Hosted by:

Implementing Actions

1. Stock Taking

Building Policies for a Better World

- 2. Scenario analysis & Goal setting
- **3. Implementation Support & Capacity Building**

Stock-Taking

EU – Building Stock & Code Data

SHARING TRANSPARENCY FOR A MORE EFFICIENT FUTURE International Rating & Disclosure Policy Database

Scenario Analysis & Goal Setting

BUILDING ENERGY PERFORMANCE SCENARIOS

This tool enables you to interactively compare your situation with modeled data for three possible energy mitigation scenarios for the building sector, globally and per region up to 2050. Enables analysis by building type, vintage & climate zone.

Includes open source data-sets.

Coming Soon:

MRV Base-Line & Scenario Tool for Building Energy Related GHG emissions

Implementation Support & Capacity Building

POLICY TOOL FOR NEW BUILDINGS

POLICY TOOL FOR RENOVATION

Building Policies for a Better World

Thank you! Let's stay in touch ...

Consult our web site: www.gbpn.org Follow us on Twitter: @GBPNetwork

Send us an email: pg@gbpn.org

Towards a Global Alliance for Buildings and Construction **BUILDINGS DAY**

At COP 21 3 December 2015

Building Energy Codes Portal www.gbpn.org/laboratory/building-energy-codes-portal

Lab Pages

Country Information Sheets
Directory of Experts
Supporting Resources

Welcome to the Building Energy Codes Portal

Best Codes still struggle to Implement

Globo	al Buildings Performance Network				_				
Holi	stic Approach	Dyn	amic Process	Impl	ementation	Тес	hnical Requirements	Over	rall Performance
	Performance Approach		Zero Energy Target	ਂ	Enforcement Standards		Building Shell		On-site energy
	Includes All Energy		Revision Cycle	ਂ	Certification		Technical Systems		Primary Energy
	Energy Efficiency & Renewable Energy		Levels Beyond Minimum	V	Policy Packages		Renewable Energy Systems		GHG Emissions
Rating	Sort <u>alphabetically</u> By score					(Deselect X Reset 🧲	Share	Criteria ? Help
10 -									
9 —									
8 —									
7 —				,					
6 —		\bowtie		A		21			
5 —		\bigtriangledown		$\overline{\mathcal{A}}$		Ì		417	A 1.7
4 —	f f			1		\sim_l		¥	
з —								15	7. X K -
2 —	• Define a clear go	ver	nance structure	e ar		arr	angement		
1 —	 Define funding m 	nec	hanisms to secu	re	financial resour	ces			K
0 —	 Decide on compl 	ian	ce and evaluation	on	methodologies	an	d indicators		
	Involve stakehol	der	s and market-ad	cto	rs				
	Sundan Austria Dennant Susanore The Hernelands California	Franc	Connend Friend Heland Hase	Jusette	^{ризил} ^{укаве} ов ^{об} _П инана с 18	main	Sparr Hardond Dura Public Scalle Real Tol	ORY Ra Sevor	and sharn's mile

GBPN Best Codes are revised toward targets

GIODO	Global Buildings Performance Network								
Holistic Approach		Dynamic Process		Implementation		Technical Requirements		Overall Performance	
	Performance Approach	ਂ	Zero Energy Target		Enforcement Standards		Building Shell		On-site energy
	Includes All Energy	V	Revision Cycle		Certification		Technical Systems		Primary Energy
	Energy Efficiency & Renewable Energy	Ø	Levels Beyond Minimum		Policy Packages		Renewable Energy Systems		GHG Emissions
Duptan 10	Sort <u>alphabetically</u> By score		Best perform	ing	g jurisdictions se	et L	Deselect X Reset <	^{Share} tS,	Criteria ? Hel
9 —			implementat	ior	n road-maps and	l sc	heduled revisio	ns	– this
8 — 7 — 6 —			requires cons	sen	nsus building and	⅓ st	akeholder invo	lve	ment.
5 4 3				Ì					
2								7/12	XXX
	And	- man	d ruber aler aller	-1890F	uship usate cattle coole	Spain	Mand man where w	OR4	ouble many cold
	The Mathen San Fr. Cen. He	64.	Fugging 2. to Came	0	19		Here South a real of	Oning	a hal China Severa

Best Codes take a Holistic Approach

Holis	stic Approach	Dynamic Process	Implementation	Technical Requirements	Overall Performance
V	Performance Approach	Zero Energy Target	Enforcement Standards	Building Shell	On-site energy
Ø	Includes All Energy	Revision Cycle	Certification	Technical Systems	Primary Energy
	Energy Efficiency & Renewable Energy	Levels Beyond Minimum	Policy Packages	Renewable Energy Systems	GHG Emissions
Rating	Sort <u>alphabetically</u> By score			Deselect X Reset	Share Criteria ? Help
10 — 9 — 8 —			,		
7 —				1. L.	
6 —			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
5 —					
4 —	Integrated desig	n can increase sav	ing		
3 —	notential by abo	ut 30% compared	with		
2 —	incremental ann	roaches but reg			-
1 —	supporting tools	and data			
0 —					-
				-84	
	France Rustin Instand Strates Lettertonds Dennah	Friend Linuana Canana Callonia South Hakes	Sweden Singapone Shain Loh Cell Manyand	onaho sealle puatri colt public	India Disante Dieson Dieson die Internation
	FLOR AND	418.41	20	Ohing	ble shing the

Best Practice Residential Renovation Policy Packages

6 Basic Components

Key Observations

- Countries increasingly recognize the need to strengthen implementation to achieve goals
- Codes have become more stringent and complex over time, which can make implementation more difficult – important to keep it simple
- Most jurisdictions require the review of building designs for compliance with the building energy code; some also inspect buildings to ensure code compliance; Post occupancy or 'outcomes-based' assessment is rarely practiced.

Common Elements of Implementation Systems

- 1. Capacity Building and Education
- 2. Compliance Checking Systems: Design, Construction and Commissioning (Note: many jurisdictions only check building design, but growing understanding of need for more extensive, yet cost-effective checks to produce energy efficient buildings)
- **3. Compliance Checking Tools**: Mainstreaming Compliance Compliance-checking software, clear rules for simulation-based compliance User guides
- 4. Building Material Testing and Labelling Test protocols: tailor to local conditions (e.g. India) Independent labs Clear labels to make compliance easier
- 5. Evaluation of the Overall Process