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Executive Summary 

This report presents the results of an analysis, commissioned by the U.S. Department of Energy, of Air 

Conditioner (AC) efficiency in support of the Super-efficient Equipment and Appliance Deployment 

(SEAD) initiative.1 The International Energy Studies group at Lawrence Berkeley National Laboratory in 

collaboration with Navigant Consulting Inc. performed the analysis. SEAD aims to transform the global 

market by increasing the penetration of highly efficient equipment and appliances.  

SEAD partners work together in voluntary activities to: (1) “raise the efficiency ceiling” by pulling super-

efficient appliances and equipment into the market through cooperation on measures like incentives, 

procurement, awards, and research and development (R&D) investments; (2) “raise the efficiency floor” 

by working together to bolster national or regional policies like minimum efficiency standards; and (3) 

“strengthen the efficiency foundations” of programs by coordinating technical work to support these 

activities.2 

The objective of this analysis is to provide the background technical information necessary to improve 

the efficiency of ACs and to provide a foundation for the activities of SEAD participating countries. We 

find that even the best currently available technology offers large efficiency improvement opportunities 

(35% to 50% reduction in energy consumption from the market average) in most SEAD countries. The 

cost effective efficiency improvements range from 20% to 30% reduction in energy consumption based 

on a consumer perspective.  

Objective and Scope 
The objective of this analysis is to identify potential Room AC efficiency improvements and their 

incremental costs, as well as to provide approximate global and country-specific estimates of total 

energy savings potential. The overarching goal is to provide relevant information to support design of 

policies and programs that will accelerate the penetration of super-efficient Room ACs. 

This report addresses two categories of AC efficiency improvement potential: cost effective and 

technical. The efficiency improvements studied are those that are technically feasible, practical to 

manufacture, and feasible using components or technology that is already commercially available, and 

therefore could be realized in the short to medium term. The relationship between cost and efficiency 

improvement potential is presented in a consolidated fashion in terms of cost versus efficiency 

improvement and savings potential curves which can be used to estimate the technical and cost effective 

                                                   

 

1
 As one of the initiatives in the Global Energy Efficiency Challenge, SEAD seeks to enable high-level global action by informing 

the Clean Energy Ministerial dialogue. In keeping with its goal of achieving global energy savings through efficiency, SEAD was 

approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010.  
2 As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, 

Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the 

United States. More information on SEAD is available from its website at http://www.superefficient.org/. 

http://www.superefficient.org/
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potential. Based on the information presented in the cost versus efficiency curve, the cost effective 

potential can be estimated at different levels of electricity costs which vary across consumer categories. 

Analysis Method and Data Sources 
The analysis makes use of the energy efficiency incremental component costs and efficiency 

improvement options and corresponding energy efficiency data developed under the European 

Commission’s Ecodesign program Lot 10 study. This analysis has up-to-date cost and efficiency data 

which was derived from extensive engagement with manufacturers and other industrial experts.  

The base case is defined as a split fixed-speed room air conditioner model developed for the EU Lot 10 

study, which is very typical of fixed speed split systems found around the world but is not the least 

efficient kind of product one can find on the market. Thus the analysis starts from a mid-market point for 

much of the world Room AC market3.  

Once the base case is simulated the cost and energy efficiency of successive design changes are 

simulated such that all 1728 possible mutually exclusive options have been simulated for each economy. 

Local labor, supply chain markups, installation and maintenance costs, energy costs and capital costs are 

all adjusted for the local economy, based on a combination of sources such as literature, estimated 

factory gate costs, retail prices, expert contacts, and official statistics.  

The approach outlined above generates cost versus efficiency curves for each economy, including 

manufacturer (or factory gate) costs and costs to the end user at each level of efficiency corresponding 

to a design change. The efficiency levels are calculated using climate specific and local hours of use data, 

generating different efficiency levels for the same model in different economies. 

Efficiency, Cost Effectiveness, and Energy Savings Metrics 
While the efficiency at full load i.e. the energy efficiency ratio (EER) has been the most commonly used 

metric historically, most air conditioners only operate at full load for a small proportion of the time. The 

seasonal energy efficiency ratio (SEER) gives a better approximation of the annual average energy 

efficiency of a room air conditioner as SEER metrics are designed to account for performance during part 

load conditions occurring from time to time to produce a statistically representative metric of annual 

average energy efficiency. Currently such metrics are in place in Japan (called the Annual Performance 

Factor or APF) and the USA/Canada (known as the SEER).For this study we have chosen to use the new 

European Seasonal Energy Efficiency Ratio (ESEER), because unlike the other two metrics it also takes 

account of energy consumption in off and idle modes as well as energy used to keep crank cases warm in 

                                                   

 

3 In this study we consider window and unducted split packaged ACs under the general rubric of “Room ACs”. The global Room 
AC market is dominated by unducted split-packaged (known in the US as mini-split) air conditioners, with a trend towards these 
and away from window ACs in all the economies studied. Central air conditioners (US style ducted AC, packaged or split), are 
described in brief in Chapter 2, but are not the focus of this report. For a more detailed description of the different types of ACs, 
please see Chapter 2, while the trend toward split-packaged ACs is discussed further in Section 3.1. 
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the heating system for reversible units and hence is likely to be more representative of performance of 

ACs when they are in use. Accordingly, all results in the report are reported in terms of the ESEER.  

The cost-effectiveness metric used in the analysis presented here is the cost of conserved electricity 

(CCE), which is calculated by dividing the annualized incremental cost of a design change by the 

incremental energy saved by the design change per year. The design change is considered with respect 

to a design corresponding to the market average efficiency level in each economy. 

Two kinds of costs of conserved electricity (CCE) are calculated as follows: a) CCE to the manufacturer, 

(CCEm), which considers the incremental cost of the higher efficiency model at the factory gate i.e. to the 

manufacturer and b) CCE to the consumer, (CCEc), which considers the incremental cost of the higher 

efficiency model to the consumer or end user. The former metric (CCEm ) is lower than the latter (CCEc) as 

it does not include markups and installation costs. CCEm could be used to measure the cost-effectiveness 

of a market transformation program such as a utility program offering an incentive to the manufacturer, 

while CCEc would be used to measure the cost effectiveness a consumer incentive program or a 

minimum energy performance standard (MEPS) program.  

Efficiency improvement options are cost effective if CCE is lower than the cost of electricity. Given that 

the cost of electricity varies across different stakeholders (i.e. consumers and utility), the cost effective 

level of efficiency improvement varies across stakeholders.  

Finally, this analysis presents an estimate of the energy savings from Room ACs at various efficiency 

levels in 2020 from a Room AC market transformation program or policy implemented beginning in 

2012, by using the earlier efficiency data and base sales data for each economy from the CLASP mapping 

report, BSRIA data, and the EU Ecodesign study. These data were extrapolated to 2020 using the model 

from McNeil et al. (2008). The sales forecast from Letschert (2009) was used for China. The metric used 

to report energy savings is Rosenfelds. One Rosenfeld is equivalent to annual energy savings of 3 

Twh/year, i.e. about the energy generated by one medium-sized power plant. 

  



 

 

4 

Summary of Findings 

Five Economies Constitute a Large Share of the Room AC Market Among Those Studied 

Among the countries studied4, Room AC/Heat Pump sales are dominated by 5 economies (China, India, 

Brazil, Japan and the EU), with expected total 2014 sales of about 90% of the total market in the 

economies studied. Sales in the emerging economies are increasing fast, while sales in Europe and Japan 

are high and remain steady (Figure E1). The markets in the United States and Canada are dominated by 

large ducted AC systems, also sometimes referred to as Central ACs in the rest of the world rather than 

Room ACs. 

 

Figure E-1 Current and projected Room AC Sales in various countries (logarithmic scale) Source: BSRIA, 
and CLASP Mapping Report (Baillargeon, 2011) 

                                                   

 

4 In this report we focus on the SEAD participating governments and China. As of April 2011, the governments participating in 
SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South 
Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available 
from its website at http://www.superefficient.org/ 

http://www.superefficient.org/
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Significant Potential for Efficiency Improvement Exists 

The average energy efficiency of unducted split-packaged (known in the US as mini-split) air conditioners 

ACs/Heat Pumps which form the majority of global residential air conditioners in every country except 

the United States, varies from an average Energy Efficiency Ratio (EER) of 4.1 in Japan to an average of 

2.69 in the UAE as shown in table E-1 below. The Japanese market has the most efficient air conditioners 

that are commercially available, with a maximum EER of 6.67 W/W, and an average of 4.1. We report 

efficiencies in table E-1 in EER terms even though the rest of the report uses ESEER, since the data 

available is reported using this metric.  

Even though the data presented in Table E-1 are illustrative and cannot be compared directly across 

countries due to lack of availability of overlapping data sets and minor differences in test procedures, 

these data can be compared within each country studied. Table E-1 clearly and unequivocally show that 

there is a significant gap in efficiency terms between the best available split package AC in each economy 

and the average AC in that same economy. If the best available technology available globally is 

considered, it is even more evident that there is significant room for improvement in Room AC efficiency 

in all the economies, even if only ACs currently available on the market are considered. 

Table E-1 Average EERs of unducted split-packaged ACs in various economies in 2010-2011 

(illustrative)5
 

 
EER (W/W) 

Country Min Max  Average  

Australia 2.67 4.88 3.16 

Brazil 2.92 4.04 3.19 

Canada 2.14 4.33 3.6 

China 2.9 6.14 3.23 

EU 2.21 5.55 3.22 

India 2.35 3.6 2.8 

Japan 2.37 6.67 4.1 

Korea 3.05 5.73 3.78 

Mexico 2.42 4.1 2.92 

Russia 2.5 3.6 2.79 

South Africa 2.28 5 2.91 

UAE 2.14 3.22 2.69 

USA - 4.6 3.04 
Source: Catalog searches, IEA 4E M&B 2010, Baillargeon, 2011  

                                                   

 

5 This data should be treated as illustrative as no overlapping datasets were available to cross-check these data points. Data 
shown in table E-1 are based on a) samples obtained from catalog searches in Brazil, Canada, Mexico, Russia, South Africa and 
the UAE, b) from the IEA 4E Mapping and Benchmarking Analysis for Australia c) from the CLASP Mapping Report for China, EU, 
India, Japan and the USA, and d) from the IEA 4E Mapping and Benchmarking Analysis for Korea. (IEA 4E M&B 2010, Baillargeon, 
2011) 
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Summary of Efficiency Improvement Options  

Various options to improve air conditioner efficiency exist, including “classic options” such as increasing 

heat exchanger size/efficiency, variable speed and efficient compressors, efficient fans, and thermostatic 

and electronic expansion devices. In Table E-3 below, we summarize some of the more common options, 

and the corresponding energy savings (%) compared to the base case. The range shown in Table E-2 

indicates the range of energy savings possible from a small incremental efficiency improvement (min), or 

the best technology available (max). 

 

Table E-2 Classic Efficiency Improvement Options and Corresponding Energy Savings6 

Option Description 
% improvement 
from base case 

    Min Max 

Efficient Heat 
Exchanger 

high efficiency microchannel heat 
exchangers, larger sized heat exchangers 

9.1% 28.6% 

Efficient Compressors 
two-stage rotary compressors, high 
efficiency scroll compressors with DC motors 

6.5% 18.7% 

Inverter/Variable 
Speed 

AC, AC/DC or DC inverter driven 
compressors 

20% 24.8% 

Expansion Valve 
Thermostatic and electronic expansion 
valves 

5% 8.8% 

Crankcase Heating 
Reduced crankcase heating power and 
duration 

9.8% 10.7% 

Standby load Reduced standby loads 2.2% 2.2% 

Total/cumulative7 
 

60 % 72% 

 

If all the efficiency improvement options shown in Table E-2 above are employed, then the higher 

efficiency Room AC could save between 60-72% of energy compared8 to the base case model in the 

various economies studied, varying by usage and climate in the various economies studied.  

                                                   

 

6
 The energy savings figures presented here are representative of conditions in Europe. 

 

7 Note: Cumulative efficiency improvement is lower than a simple addition as the options are not mutually exclusive, i.e. 
improvement using one option reduces the baseline energy consumption to which the next efficiency improvement option is 
applied. Also, the improvements due to variable speed drives are climate and usage dependent. 
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Efficiency Improvement to ESEERs between 4.2- 7.44 W/W is Cost Effective Leading to Savings 
Potential of over 63 Rosenfelds9 

Applying the efficiency improvement options discussed earlier to the base case model, and calculating 

the incremental cost to the consumer of conserved electricity as described in chapter 4 of this report, we 

present the resulting cost versus efficiency curve in Figure E-2 below. 

 

Figure E-2 Cost to Consumer of Conserved Electricity (CCEc) Versus Room AC Efficiency for Various 
Economies 

In economies with a higher cost of capital(i.e. discount/interest rates) such as Brazil, or low hours of use, 

higher efficiency ACs carry a larger cost of conserved electricity, when compared to India or UAE. For 

countries such as Japan where ACs are used for both heating and cooling, and India or UAE, where ACs 

are used for many hours annually, very high ESEERs are attainable at low cost per unit of electricity 

saved. Significant energy savings are cost effective in most of the economies studied, as further shown in 

Table E-3 below. 

  

                                                   

 

9 In line with Koomey et al. 2010, we use the unit of Rosenfeld for denoting energy savings. One Rosenfeld=3TWh/year, or 
approximately one 500MW (i.e.medium power plant). 
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A B C D E F G H 

Country 
Tarriff 
$/kW

h 

Market 
Averag

e 
ESEER 

Economic 
Potential 

ESEER 
(W/W) @ 

Tariff = CCEc 

Technical 
Potential 

Max ESEER 
(W/W) 

2020 Energy 
Savings @ 
Economic 
Potential 

(Rosenfelds) 

2020 Energy 
Savings @ 
Technical 
Potential 

(Rosenfelds) 

2020 CO2 
savings @ 
Technical 
Potential 

(tons/year) 

Australia 0.10 4.03 4.48 8.55 0.35 2 4 

Brazil 0.19 4.05 5.67 8.83 6 10 3 

Canada 0.08 4.58 4.54 8.26 0 0.24 0.1 

China 0.19 4.11 5.19 7.30 16 33 99 

EU 0.19 4.09 5.00 8.33 11 30 32 

India 0.08 3.56 5.55 7.91 19 29 78 

Japan 0.22 5.21 7.44 7.85 8 9 11 

Korea 0.07 4.80 5.33 8.45 1 4 5 

Mexico 0.08 3.71 4.45 9.74 0.15 1 1 

Russia 0.05 4.20 4.20 10.23 0 4 4 

UAE 0.07 3.46 6.24 7.64 2 2 3 

USA 0.11 3.87 6.80 8.00 0.2 0.24 0.4 

Total         64 123 241 

 

Table E-3 ESEER and Energy Savings at Economic and Technical Potential 

In the above table E-3, we present the following information: 

 Column B: representative consumer tariffs for the economies studied.  

 Column C: the approximate market average ESEER converted from the EER values reported in 

chapter 3.  

 Column D: the economic or cost effective potential in terms of ESEER i.e. at efficiency levels 

where cost of conserved electricity equals the tariffs in column B.  

 Column E: the total or technical potential in ESEER terms, i.e. the ESEER possible by deploying 

the best available technology in the climate and seasonal conditions of the respective 

economies. 

 Column F: the 2020 annual energy savings potential from Room AC efficiency improvement in 

Rosenfelds (3TWh/yr), assuming that the corresponding market transformation program goes 

into effect at the efficiency level corresponding to column D and transforms 100% of the market. 

i.e. a standard corresponding to column D. 

 Column G: the 2020 annual energy savings potential from Room AC efficiency improvement in 

Rosenfelds (3TWh/yr), assuming that the corresponding market transformation program goes 

into effect at the level corresponding to column E and transforms 100% of the market. i.e. the 
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potential available for a labeling or incentive specification corresponding to column E.  

 Column H: the 2020 annual CO2 savings potential from Room AC efficiency improvement 

assuming that the corresponding market transformation program goes into effect at the level 

corresponding to column E and transforms 100% of the market. i.e. the potential available for a 

labeling or incentive specification corresponding to column E. 

The total 2020 energy savings potential from standards that is cost effective from a consumer 

perspective is about 64 Rosenfelds, i.e. Equivalent to 64 medium sized power plants (or 192 TWh/year), 

while the total technical potential is about 123 Rosenfelds, i.e. about 123 medium sized power plants(or 

369 TWh/year). (Koomey et al. 2010) 

If the costs of peak power, backup generation or power outages are included in the consideration of 

cost-effectiveness, due to the high peak coincidence of Room AC use, the ESEER levels that would be 

considered to be cost effective would be even higher than those shown in column D, along with 

correspondingly higher savings to those bearing these costs (i.e.taxpayers, other ratepayers etc.) 

Low Global Warming Potential (GWP)/ Ozone Depletion Potential (ODP) Refrigerants Can 

Have a Cost and Efficiency Impact 

Through the Montreal Protocol and related processes, the Room AC industry is developing lower GWP 

refrigerants to phase out high GWP, HFC-based refrigerants. This next generation refrigerant 

development process has many tradeoffs with cost and energy efficiency, thus all three issues (cost, 

efficiency, and low ODP/GWP) need to be considered when designing market transformation programs. 

Insights for designing market transformation programs  
Based on the analysis presented in this report, Room AC energy efficiency improvement offers significant 

opportunity for cost-effective energy efficiency improvement. We provide an example of how the 

information presented in the form of a cost curve can be used in designing efficiency market 

transformation programs such as MEPS and incentives  
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Figure E-3 Cost Curves and Market Transformation Programs  

If the criteria for setting minimum energy performance standards (MEPS) are that efficiency 

improvements targeted should be cost effective from a consumer perspective, then the level of 

efficiency improvement that can be targeted will be where CCE is less than or equal to the consumer 

tariff (see Figure E-2).  

In several cases, consumer tariff are lower than the cost of supply during the time when ACs are used. In 

such instances, efficiency levels targeted by financial incentive programs could be where CCE is less than 

or equal to cost of supply during those times (long run marginal cost of supply at the time when the ACs 

are used). 

Metrics of cost effectiveness that are typically used for designing efficiency programs could be expanded 

beyond consumer cost-effectiveness perspective in several other ways. For example, such metrics could 

account for subsidies, the cost of peak power, the costs of backup generation, or the costs of power 

outages. The cost effectiveness data presented in Chapters 4 and 5 of this report could be used to design 

programs with such expanded considerations of cost-effectiveness, and therefore correspondingly target 

higher efficiency levels. While expanded metrics could also be used across multiple product categories, 

such expanded metrics are particularly relevant for AC use due to the high contribution of ACs to peak 

loads, power outages, and backup generation. 

Note that the analysis presented in this report provides initial estimates of costs for various levels of 

efficiency improvements and is likely to need further refinement in order to be used for program design 

purposes.  
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Chapter 1. Introduction 

 

The U.S. Department of Energy (DOE) commissioned the International Energy Studies group at Lawrence 

Berkeley National Laboratory to undertake this technical analysis of room Air Conditioner (AC) efficiency 

in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. The 

subsections below describe SEAD, the objective, scope and data sources for this project, and the 

organization of the remainder of this report. 

1.1 Super-Efficient Equipment and Appliance Deployment Initiative (SEAD) 

The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient 

equipment and appliances. SEAD is a government initiative whose activities and projects engage the 

private sector to realize the large global energy savings potential from improved appliance and 

equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy 

Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its 

goal of achieving global energy savings through efficiency, SEAD was approved as a task within the 

International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010.      

SEAD partners work together in voluntary activities to: (1) “raise the efficiency ceiling” by pulling super-

efficient appliances and equipment into the market through cooperation on measures like incentives, 

procurement, awards, and research and development (R&D) investments; (2) “raise the efficiency floor” 

by working together to bolster national or regional policies like minimum efficiency standards; and (3) 

“strengthen the efficiency foundations” of programs by coordinating technical work to support these 

activities.  

Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have 

agreed to engage actively in their particular areas of interest through commitment of financing, staff, 

consultant experts, and other resources. In addition, all SEAD partners are committed to share 

information, e.g., on implementation schedules for and the technical detail of minimum efficiency 

standards and other efficiency programs. Information collected and created through SEAD activities will 

be shared among all SEAD partners and, to the extent appropriate, with the global public. 

As of February 2013, the governments participating in SEAD are: Australia, Brazil, Canada, the European 

Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United 

Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from 

its website at http://www.superefficient.org/. 

1.2 Objective and Scope 

The objective of this analysis is to identify potential Room AC efficiency improvements and their 

incremental costs, as well as to provide initial global and country-specific estimates of total energy 

savings potential. The overarching goal is to provide relevant and appropriate information to support 

design of appropriate policy programs that will accelerate the penetration of super-efficient Room ACs.  

http://www.superefficient.org/
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This report sets out the main characteristics of residential air conditioning systems in use internationally 

and seeks to assess and report the energy saving options for room air conditioners across principal 

economies namely: China, Europe, India, Japan and the USA.  It is adapted to other economies by 

application of local cost factors. The report builds on the analysis presented as part of the US 

Department of Energy’s recent rulemaking and Max Tech Analysis and discusses additional elements not 

originally considered including: free cooling for window/louvered air conditioners, smart grid coupling, 

occupancy sensors, variable speed compressors, blower and fan efficiency improvements, effect of new 

refrigerants, as well as other efficiency improvement options currently being considered worldwide. 

Moreover, alternative electromechanical cooling options that may be applicable in some climates and 

economies such as evaporative cooling, phase change materials and night cooling storage technologies, 

are also outlined in Appendix A. 

1.3 Analysis Method and Data Sources 

The energy efficiency simulation model used in this analysis is the same one used for the EU’s Ecodesign 

Lot 10 study and is an adapted version of the Oak Ridge National Laboratory model that has previously 

been applied to similar analyses in the USA for the USDOE.  

The analysis makes use of the energy efficiency incremental component costs and efficiency 

improvement options and corresponding energy efficiency data developed under the European 

Commission’s Ecodesign program Lot 10 study. This analysis has been recently completed and it thus has 

up-to-date cost and efficiency data which was derived from extensive engagement with manufacturers 

and other industrial experts.  

The base case is defined as a split fixed-speed room air conditioner model developed for the EU Lot 10 

study, which is very typical of fixed speed split systems found around the world but is not the least 

efficient kind of product one can find on the market. Thus the analysis starts from a mid-market point for 

much of the world Room AC market.  

Once the base case is simulated the cost and energy efficiency of successive design changes are 

simulated such that all 1728 possible mutually exclusive options have been simulated for each economy. 

Local labor, supply chain markups, installation and maintenance costs, energy costs and capital costs are 

all adjusted for the local economy, based on a combination of sources such as literature, estimated 

factory gate costs, retail prices, expert contacts and official statistics.  

The approach outlined above generates cost versus efficiency curves for each economy, including 

manufacturer (or factory gate) costs and costs to the end user at each level of efficiency corresponding 

to a design change. The efficiency levels are calculated using climate specific and local hours of use data, 

generating different efficiency levels for the same model in different economies. 

Finally, this analysis presents an estimate of the energy savings from Room ACs at various efficiency 

levels in 2020 from a Room AC market transformation program or policy implemented in 2012, by using 

the earlier efficiency data and base sales data for each economy from the CLASP mapping report, BSRIA 

data, and the EU Ecodesign study. These data were extrapolated to 2020 using LBNL’s Bottom Up Energy 

Analysis System (BUENAS) model (McNeil et al. 2013) . The sales forecast from Letschert (2009) was used 
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for China. 

1.4 Organization of this Report 

The remainder of this report is organized as follows: 

Chapter 2, Engineering Analysis, discusses various types of Air Conditioning systems and opportunities 

to increase AC efficiency for the most common type of Room ACs 

Chapter 3, Market and Energy Consumption Trends discusses the current efficiency levels, sales data 

and energy consumption trends in the Room AC market. 

Chapter 4, Economic Analysis, discusses the costs and corresponding energy savings of the classic 

efficiency improvement options presented in Chapter 2, and presents the results of cost-effectiveness 

analysis based on the cost of the conserved energy (CCE). 

Chapter 5, Estimates of Energy Savings Potentials, presents AC energy and CO2 savings potentials  

Chapter 6 Summary and Conclusions, summarizes the previous chapters and offers conclusions and 

suggestions relevant for policymakers. 

Several appendices provide supporting information for this analysis as follows: 

Appendix A lists climate specific efficiency improvement options that can also lead to substantial savings 

in Room AC energy consumption. 

Appendix B presents country-specific manufacturing cost curves at various efficiency levels for the 

classic efficiency improvement options presented in Chapter 2. 

Appendix C presents a discussion of the rebound effect in air conditioners. 

Appendix D presents a sensitivity analysis of the cost effectiveness analysis and energy savings potential 

to various assumptions, as well as some of the country-specific assumptions used. 

 

  



 

 

14 

Chapter 2. Engineering Analysis 

Residential air conditioning equipment is designed to provide space cooling in households but the same 

equipment can also often be used to provide heating depending on the design. International 

comparisons are complicated by the fact that the type of systems commonly used in North America are 

rarely used anywhere else in the world, whereas the most common international solutions are only used 

in small quantities on the US market. In addition, the test procedures used to measure cooling capacity 

and to rate the efficiency of a unit can also vary from one economy to another which further complicates 

attempts to benchmark the energy performance of equipment at an international level. Nonetheless, 

there are sufficient similarities for some meaningful comparisons to be made and opportunities to be 

identified. 

2.1 Types of Residential Air Conditioner 

The term “Residential Air Conditioner” can be applied to any air conditioning system that is applied to 

household cooling. In practice, as air conditioners are a type of heat pump i.e. they use energy to move 

heat from one place to another, and in consequence they can often also be operated in reverse to 

provide space heating. Systems with such a function are known as “reversible” units but will be referred 

to as either reversible or heat pumps from here on. The other main distinctions between air conditioning 

systems are: 

 whether they are ducted or not, which means whether they are designed to be connected to 

separately supplied ducting which is used to distribute space conditioned air around a building. 

Central air conditioners are ducted and non-central (including room air conditioners) are not 

ducted 

 whether they use air or water as the distribution medium for cooling. 

 whether their condenser (outside unit) is designed to be thermally coupled with the outside air, 

ground or water as the external heat reservoir 

 whether they use the vapor compression cycle or an alternative refrigeration cycle such as 

absorption cooling and evaporative cooling 

 

This study seeks to present the conventional options for increasing the energy efficiency for the most 

commonly used systems, namely those using vapor compression cycles without evaporative cooling and 

that have external heat transfer with the air (not the ground or water). It then continues by evaluating 

the more exotic and climate-specific solutions for increasing the energy efficiency of these systems, 

which are presented in Appendix A. It should be noted that in several instances the less common air 

conditioning strategies are the most energy-efficient and thus energy saving policies are needed which 

encourage the adoption of the optimal solution within each specific application context, in addition to 

encouraging the adoption of higher efficiency systems within each product class.  

In the remainder of this section, the various types of room air conditioners are presented using the most 

common international commercial product classifications, namely: 
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 Split-packaged units (referred to as mini-split or duct-free split in the US) 

 Multi split packaged units 

 Single packaged units (referred to as window air conditioners in Europe, but also package 

terminal air conditioners in the US) 

 Single duct units 

 Double duct units 

 Central air conditioners (US style ducted AC, packaged or split) 

 Residential chillers (mini chillers) 

 

All the systems listed here may be reversible when equipped with a four-way valve, which allows the air 

conditioner to operate as a heat pump. This is a very common feature and for some classes of residential 

air conditioners they predominate in the market compared to cooling only systems. It is thus overly 

restrictive to consider the cooling-only performance of heat pumps in isolation of their heating 

performance when making energy efficiency comparisons.  

Split-packaged units (including mini-splits) 

Split-packaged units are defined as a factory assembly of components from a refrigeration system fixed 

on two or more mountings to form a matched unit. This appliance type has two packages (one indoor 

and one outdoor unit) connected by a pipe that transports the refrigerant. The indoor unit includes the 

evaporator and fan and the outdoor unit includes the compressor and condenser. Note that the indoor 

unit(s) can be ducted or non-ducted. 

 Non-ducted indoor units may be either fixed – whether mounted high on a wall, floor-mounted 

or, as ‘cassette’, ceiling-suspended, built-in horizontal or built-in vertical – or, mobile. The 

outdoor unit may be either fixed or mobile 

 Ducted indoor units can deliver cool air into several rooms or into several ports within a single 

room 

 

Standard split-packaged (mini split) air conditioners dominate air conditioner sales in most parts of the 

world including Asia and Europe. They are among the most energy efficient options for room air 

conditioning. 

It should also be noted that in economies outside North America split-packed AC (mini splits) are 

considered to be a type of room air conditioner because they only cool a single room whereas in North 

America they are considered to be a type of central air conditioner both for the purposes of testing and 

within energy efficiency regulations. As a consequence, in the USA they are tested in the same manner 

and are subject to the same regulatory requirements as other types of central air conditioning 

equipment (see section on central air conditioners below). 
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Table 2-1: Different types of split-packaged units (split) air conditioners 

Type of Air 
Conditioner 

Operating Schemes Examples 

Non ducted 
fixed split-
packaged unit 
(split system) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Indoor unit: Wall mounted  
 
 
 
 
 
 
 
 
 

Indoor unit: Console or ceiling suspended 
 
 
 
 
 
 
 
 
 

Indoor unit: Cassette 
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Table 2-2: Different types of split-packaged units (split) air conditioners continued 

Type of Air 
Conditioner 

Operating Schemes Examples 

Non-ducted 
split-packaged 
unit with 
mobile indoor 
unit (mobile 
split) 

 

Mobile indoor unit 
 
 
 
 
 
 
 
 
 
 
 

Ducted split-
packaged unit 
(Ducted split 
system) 

 

Ducted built-in horizontal indoor unit 
 
 
 
 
 
 
 
 

Source: (EuP, 2009) 

 
Multi-split packaged units (multi split) 

Multi-split packaged units contain numerous interior units (typically up to 4 units) connected to a single 

exterior unit. These units are similar to split interior and exterior units. Indoor units can also be ducted 

or non-ducted. 

Table 2-3: Multi-split packaged (multi-split) air conditioners 

Type of Air 
Conditioner 

Operating Schemes Example 

Multi-split-
packaged 
units 
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Source: (EuP, 2009) 

Multi-split systems should not be confused with VRF systems (Variable Refrigerant Flow) which is the 

name generally adopted to avoid using Daikin’s trade name, Daikin VRV®, of variable refrigerant volume. 

In both multi-split units and VRFs, every inside unit is connected to the single outside unit. However in 

VRF systems, the refrigerant flow to the inside units can each be individually controlled and customized 

for the desired conditions at the inside unit, this is not the case for multisplit units, which are typically 

designed for a single thermal zone with similar heat gains/losses. 

Single-packaged units 

Single-packaged units, commonly referred to as ‘through-the-wall’ or ‘window’ air conditioners (these 

are called room air conditioners in the USA), are strictly defined as a factory assembly of components 

from a refrigeration system fixed on a common mounting to form a single unit system. 

This equipment is composed from a single package, one side of which is in contact with the outside air 

and releases heat outside, while the other side provides direct cooling to the air inside.  The two sides of 

the appliance are separated through a dividing wall, which is insulated to reduce heat transfer between 

them. Single-packaged units often fit above or below a window or above a door. A key distinction is 

whether they have louvered sides (designed for window opening installation) or not (designed for an 

opening in the exterior wall installation). 

The wall type units which include an air damper to control air change (thus also supplying air change) are 

called package terminal air conditioners.  Window and wall single packaged units are an older 

technology than split-packaged room air conditioners. They used to dominate the room air conditioner 

market but have now generally given way to split packaged systems in parts of the world that don’t use 

central air conditioning. Nonetheless they still comprise an important part of the air conditioner market. 

Table 2-4: Window or through-the-wall package air conditioners 

Type of Air 
Conditioner 

Operating Schemes Example 

Single-
packaged-unit, 
through the 
wall 

 
 
 
 
 
 
 
 
 
 
 

 

Source: (EuP, 2009) 

Single-duct units 

Single-duct units are room air conditioning appliances whose condenser emits hot air via a duct to the 
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exterior: air that used to cool the condenser is taken inside the room and then rejected outside. These 

systems are generally mobile (i.e. can be readily moved), but in order to operate them they must be 

located close to a window or door through which the duct can expel the hot air. In principle, a dedicated 

hole should be made in the envelope just for the appliance, as the use of doors and windows for the 

duct allows hot air to infiltrate; however, in practice they are rarely used in that way. As a consequence it 

is a challenge to properly account for the thermal leakage of such ducting when measuring the energy 

performance of a single-duct system and there are concerns about the validity of the current testing 

approaches used in various parts of the world for this appliance type. Single-duct appliances are 

generally low cost and inefficient devices that tend to be used by end-users with very intermittent space 

conditioning needs. They are quite common in Europe but less so in parts of the world with more regular 

air conditioning needs. As these appliances are relatively inefficient and have low sales in the world 

market they will not be considered further in this study.  

Table 2-5: Single duct air conditioners 

Type of Air 
Conditioner 

Operating Schemes Example 

Single duct air 
conditioner 

 
 
 
 
 
 
 
 
 
 
 
 

 

Source: (EuP, 2009) 

Double-duct units 

Double-duct units are seen as the “cousin” of the single duct air conditioner and are an evolution of it. 

There are two main types of double-duct unit. The first is very similar to a single duct except that a 

second hole at the condenser enables air for the condenser to be drawn from the outside, this minimizes 

outside air infiltration into the room to be cooled. The second type is similar but of a more permanent 

installation through the wall and in that case, the two ducts may be concentric. These products are not 

thought to be very common in any market at present and as they offer no appreciable energy saving 

option compared to other designs will not be considered further in this study.  
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Table 2-6: Double duct air conditioners 

Type of Air 
Conditioner 

Operating Schemes Example 

Double duct 
air conditioner 
(through the 
wall 
installation) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Source: (EuP, 2009) 

Residential central air conditioners 

The type of residential central air conditioners that are most common in the United States and Canada 

are seldom used in other parts of the world, where “mini” split-packaged and other types of room air 

conditioning system dominate. The term “central air conditioners” refers to air conditioners that 

distribute cool air around the home via a ducted central air distribution system. The air conditioning 

units used may be either packaged air conditioners with a duct to blow cold air into the central air 

system of the residence, or a split system with a cooling coil placed in the air stream of the centralized 

air system, that can be delivered with or without a fan. Figure 2-1 shows a schematic illustration of a split 

central air conditioner.  

The key distinctions between central air conditioners and the internationally preponderant split-

packaged air conditioners are that: 

 the former are designed to cool a whole house and hence tend to have much greater cooling 

capacities 

 the split-packaged systems cool and distribute the air directly within the room where the indoor 

unit is and thus do not suffer the duct losses that are common to central air distribution systems 

furthermore they generally cool the space where an occupant is situated rather than the entire 

building and hence tend to use less energy  

Central air conditioners are the dominant home cooling system in the USA. They are installed in almost 

all new homes and are present in over 60% of all households. They also dominate residential energy use 

such that while room air conditioners were thought to use about 12 TWh of final electricity demand in 

2010 central air conditioners were thought to use 215 TWh. Improving the energy efficiency of these 
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systems and/or identifying viable higher efficiency alternatives is the main means of improving the 

efficiency of residential AC equipment in the US.    

Figure 2-1: Central air conditioner of the split type 

Source: (THA, 2011) 

Central AC and heat pump systems in the US come in a variety of sub-types.    

  

Central Air Conditioner on a Forced Air 

System 

Compressor & 

condenser coil 

Supply duct Return air duct 

Refrigerant 

pipes 

Blower 

Condensation 

piped to floor 

drain 

Evaporator coil 
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Table 2-7: AHRI Directory of Certified Product Performance Classifications for Residential Central Air 
Conditioners and Heat Pump 

DOE Product Class AHRI Classifications* 

Split system air conditioner RCU-A-AC 
RCU-A-CB 
RCU-A-CB-O 
RCUY-A-CB 
RCUY-A-CB-O 
RC-A 

Split system heat pumps HRC-A-C 
HRC-A-CB 
HRCU-A-C 
HRCU-A-CB 
HRCU-A-CB-O 
HORC-A-C 
HORCU-A-C 
HORCU-A-CB 

Single package air conditioners SP-A 
SPY-A 

Single package heat pumps HSP-A 

Small duct, high velocity systems SDHV-RCU-A-CB 
SDHV-HRCU-A-CB 
SDHV-HORCU-A-CB 

Space constrained products – air conditioners** TTW-RCU-A-C 
TTW-RCU-A-CB 

Space constrained products – heat pumps** TTW-HRCU-A-C 
TTW-HRCU-A-CB 

*The classifications listed are only those with products available in the AHRI Directories of Certified Product Performance for 
central air conditioners and heat pumps. For more information on AHRI classifications and their definitions, visit 
www.ahridirectory.org/ahriDirectory/pages/fieldHelp.aspx?program=AC&controlID=ariType for air conditioners, or 
www.ahridirectory.org/ahriDirectory/pages/fieldHelp.aspx?program=HP&controlID=ariType for heat pumps.  
**The AHRI Directory of Certified Performance did not list any space constrained products as of March 16, 2009. However, after 
January 23, 2010 (which is after the effective date for this rulemaking) the Through-the-wall equipment classes will expire, at 
which time, they will become part of the space constrained product classes. 

Source: (TSD, 2010a) 

Chiller based systems 

Mini chillers used for residential applications produce cold water which is circulated within the house to 

feed cool ceilings, floors, panels or fan coils (water to air heat exchangers). In cool ceilings and panels, 

the heat transfer is principally by radiation although convection also has a role. When fan coils are used 

the heat transfer is purely convective. This centralized system, traditionally applied within the tertiary 

building sector, can now also to be found in dwellings, although it is not yet very common. As water is a 

superior heat transfer fluid to air these systems are inherently more energy-efficient than air 

conditioning systems based on the centralized distribution of chilled air. In addition, the use of chilled 

radiative panels produces more efficient cooling than the use of liquid-cooled fan coils, this is partially 

due to the required temperature reduction of the working fluid being less; however, a large surface is 

required in each space which risks the formation of condensation in humid climates unless a 
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dehumidification system is also installed. 

2.2 Water-cooled Systems 

In principle water can be used to cool the refrigerant in all the air conditioner types described above. 

However, in practice water-cooled systems are not commercially available for single-duct or double-duct 

systems and are still very uncommon for split and multi-split systems. In Europe water-cooled mini-

chillers are on the market for use within geothermal and aquifer heat pump systems and are becoming 

quite prevalent in some European countries (notably Sweden and Switzerland). Among water-cooled 

single-package air conditioners the majority are sold for use within larger air conditioning systems called 

“Water Loop Heat Pump systems” which are used for commercial premises and thus will not be 

considered further in this study. 

For water-cooled air conditioners which are not part of a Water Loop Heat Pump system, the water can 

originate from the water mains, a natural source or be supplied in a closed circuit system. In the first 

case, the heated water is not conserved (i.e. it is returned into the sewers), in the second case the 

heated water is rejected back into the source and in the third case, the heated water is conserved and is 

cooled using a heat exchanger (e.g. a dry cooler or cooling tower10). Therefore, in the two first cases, the 

water used to condense the refrigerant is taken from either a natural source or the public water supply 

but is not conserved and thus implies higher water bills. In the third case, the water used to condense 

the refrigerant is recycled either totally or partially in the cooling tower and the water bills are thus 

lower. In principle the water used in air conditioning systems does not need to be portable but this is 

rarely an option in practice. As a result, any environmental impact assessment should also account for 

the water used in the air conditioning system. 

  

                                                   

 

10 In that case, the A/C cannot operate in the reverse cycle to supply heating. 
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2.3 Opportunities to Increase Air Conditioner Efficiency 

2.3.1 Classic Component Options Across all Economies 

In this section we describe possible efficiency gains from classic components of residential air 

conditioners such as: compressors, fans, heat exchangers, expansion devices, and refrigerant fluids. We 

also investigate improvements in the thermodynamic cycle in this section. These are summarized in 

Table 2-8 below. 

Table 2-8: Summary of Efficiency Improvement Options 

Option Description 
% 

improvement 
from base case 

Barrier to Implementation 

  
Min Max 

 

Efficient Heat 
Exchanger 

high efficiency microchannel heat 
exchangers, larger sized heat 
exchangers 

9.1% 28.6% 

Heat exchanger size constraints, 
Tradeoffs with pressure drop and 
fouling for microchannel heat 
exchangers 

Efficient 
Compressors 

two-stage rotary compressors, 
high efficiency scroll compressors 
with DC motors 

6.5% 18.7% 
Cost of moving from single to two 
stage compressor is high 

Inverter/Variable 
Speed 

AC, AC/DC or DC inverter driven 
compressors 

20% 24.8% 
Costs of DC motors with variable speed 
drives 

Expansion Valve 
Thermostatic and electronic 
expansion valves 

5% 8.8% 
Additional costs of electronic 
controller 

Crankcase Heating 
Reduced crankcase heating power 
and duration 

9.8% 10.7% 
Tradeoff in terms of 
starting/preheating time 

Standby load Reduced standby loads 2.2% 2.2% 
Tradeoffs with all standby functions 
other than reactivation  

 

2.3.1.1  Compressors 

Compressor energy efficiency gains 

Improving the efficiency of the compressor remains central to achieving improved efficiency for a vapor 

compression based air conditioner. Typically the use of scroll and rotary compressors are likely to be 

used in the cooling capacity range required by residential air conditioners. A commercially available 

energy-efficient rotary vane compressor ranges from 2.8 to 3.211 W/W and can reach up to 3.2 W/W for 

                                                   

 

11 using the ARI rating conditions for compressors 
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scroll compressors.  

In the rotary compressor it is the rotating action of the roller inside the cylinder which compresses the 

refrigerant. The eccentrically oriented roller rotates around a shaft such that this part of the roller is 

continually in contact with the inside of the cylinder wall. The blade which is spring-mounted always rubs 

against the roller. These two points of contact form two sealed regions of continually varying volume 

within the cylinder. At a certain point of the rotary cycle, the port intake is exposed and draws a certain 

quantity of the refrigerant into the cylinder, thus filling one of the sealed regions. The roller continues to 

rotate, forcing the refrigerant to undergo compression as the volume available for the refrigerant to 

occupy decreases. When the exhaust valve is exposed the high-pressure refrigerant forces the exhaust 

valve to open, thus releasing the refrigerant. The diagram in Figure 2-2 2-2 below provides a schematic 

representation of the compression cycle in a rotary fix-vane compressor (EuP, 2009).  

  

Figure 2-2: Compression cycle in rotary fix-vane compressors 

Source: EuP, 2009 

The capacity of the scroll compressor ranges from one to twenty horse power. It uses a stationary and 

orbiting scroll which compresses the refrigerant gas vapors between the evaporator and the condenser. 

The stationary upper scroll contains the refrigerant gas discharge port. The orbiting lower scroll is driven 

by an electric motor shaft assembly which imparts the eccentric/orbiting motion around the shaft 

center. See Figure 2-3 for an illustration of the compression cycle in a scroll compressor.  
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Figure 2-3: Compression cycle in a scroll compressor 

Source: EuP, 2009 

 

The cooling capacity of reciprocating compressors ranges from one to several hundred horsepower. They 

work best when they are used with refrigerants that call for relatively small displacement and 

condensing at high pressures. Between the top of the piston and the valve plate a small clearance gap 

exists to prevent the piston striking the valve plates. Vapor remains in this gap and not all of it escapes 

through the discharge valve at the end of a compression cycle. At the start of a cycle, the piston moves 

downwards and allows vapor to expand and reduce pressure. Compared to the pressure in the suction 

line the reduced pressure in the cylinder causes vapor to be drawn in. When the pressure equalizes, the 

suction valve closes. Then, the piston moves upwards, the vapor is compressed and the pressure 

increases. Then, because the pressure in the cylinder is now higher than that in the discharge line, the 

discharge valve is forced to open and the high pressured vapor is released. The cycle is repeated where 

vapor remains. The valves are accountable for head losses at suction and discharge ports, but also 

facilitate the adaptation to varying pressure conditions by the compressor. The figure below illustrates 

the compression cycle in the reciprocating compressor. 
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Figure 2-4: Compression cycle in the reciprocating compressor 

Source: EuP, 2009 

 

The relative efficiency advantage of scroll, rotary and displacement compressor technology depends on 

the desired cooling capacity. Rotary compressors are the most common types of compressor for low 

capacity units (below 6 kW) and multi-split air conditioners. For larger capacity units, scroll compressors 

are often used, alongside reciprocating (displacement) compressors. Since 1965 scroll compressor 

efficiency, when expressed as the fraction of the isentropic efficiency, rose from 0.48 to 0.73 in 2002.The 

rate of improvement, however, is slowing and only more modest additional improvements are expected 

in the future. The total “heat insulated” efficiency of scroll compressors, i.e. the ratio between the work 

supplied to the fluid and the electric power delivered by the motor of the compressor, reached 80% in 

2004 (ECCJ, 2006). Thus when coupled with a high efficiency motor, overall compressor efficiencies of 

about 75% are currently attained. The energy efficiency of rotary compressors has also continued to 

improve especially through the reduction in friction losses and by minimizing leakage between the high 

and low pressure sides. Some Japanese manufacturers have adopted rotary compressors with two 

stages, i.e. using twin rotary compression that has increased compressor efficiency by ~10%. The use of 

very high efficiency DC motors with optimized scroll compressors is another high efficiency solution 

(JRAIA, 2006).  

 

Compressor motors 

Standard permanent split capacitor (PSC) motors operate typically at 60% efficiency. The energy 

efficiency of small capacity motors are shown in Figure 2-5. Improvements in DC motors can be achieved 

by shifting to a 6-pole motor where motor volumes can be reduced by up to 30% and motor losses 

reduced by up to 20% when compared to typical 4 pole DC motors. 
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Figure 2-5: Efficiency of fractional horsepower motors 

Source: EuP, 2009 

DC motors with variable speeds can be developed by improving the form of the wave signal of the 

current delivered to the motor by shifting from square signals to sine wave current forms; illustrated in 

Figure 2-6 (ACESS, 2008). This has been driven by the development of control technology capable of 

using the motor current to estimate the rotor position as well as a marked improvement in the 

arithmetic performance of micro-computers.   

 

Figure 2-6: Evolution of Motor Current Waveform 
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Source: ACESS, 2008 

New methods are being continuously developed to achieve a further increase in DC motor efficiency and 

surpass the standard 80% efficiency. One such technique examines the use of a neodymium magnet 

which has a higher magnetic flux density and replaces the ferrite element of the conventional motor. 

Another method focuses on reducing the copper losses by designing an improved geometry for the coil 

winding.  Another technology has even started to use thin silicon steel plates or laminated steel sheets 

to limit the iron losses. In Japan such efforts have enabled 1kW motors to reach efficiencies of up to 95% 

(ECCJ, 2006).    

Stepped capacity and variable speed compressors  

The use of technologies that lead the cooling capacity of the unit to react to changes in the required 

cooling load can result in significant differences in the overall seasonal energy efficiency (SEER) and may 

also improve the full capacity operating efficiency. Seasonal efficiency is enhanced because the 

performance improves at reduced refrigerant flow rates compared to air conditioning units that cycle on 

and off. Inverters (also known as variable speed drives) are the preferred means of doing this. Inverter 

driven units also provide manufacturers with the freedom to increase or decrease the rated cooling 

capacity and EER of the air conditioning unit as a function of the EER versus cooling capacity 

performance of the appliance at varying cooling capacity levels, as illustrated in Figure 2-7. 

Important progress has been made in optimizing the compressor efficiency when operated at variable 

frequency. The increased use of high efficiency DC motors has resulted in significant gains at rated and, 

more so, reduced speeds. This has resulted in an increase in the range of operation of inverter controlled 

compressors and efficiency has been maintained and in some cases improved compared with the EER at 

full-load performance.  Now, DC inverter driven rotary compressors can operate between 8 and 120 Hz 

with a peak efficiency of 30 Hz, while scroll compressors can operate between 40 Hz and 180 Hz.   

 

Figure 2-7: COP (W/W) as a function of cooling capacity for an inverter driven AC 

Source: ECCJ, 2006 

High speed operation in the heating mode enables capacity to be maintained until -15°C (Daikin, 2007) 

by raising the frequency when the outdoor air temperature falls. This is a definitive advantage for a 
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seasonal performance index rating, as in field operations. Although the efficiency levels may be low, they 

are still higher than with the addition of resistive heating. 

2.3.1.2 Fans 
Room air conditioners typically consist of a single motor driving two fans, the condenser and evaporator 

blower fans. A variety of fan types can be used in room air conditioners, as illustrated in Figure 2-8. 

Cross-flow fans or centrifugal fans are used to produce forced air flow for indoor units, whereas axial 

fans tend to be used in the outdoor units. Variable speed electrical motors are used to drive these fans in 

order to adjust the air flow rate as required by the end-users. The type of fans used for split and multi-

split systems varies for these indoor units, however, most of the outdoor fan units tend to be of the axial 

variety. Window or wall units tend to use centrifugal fans for both sides. Whereas, in the case of single 

and double duct systems a single fan (centrifugal) is used for both the condenser and evaporator coils. 

Mobile split units use centrifugal fans indoor and axial fans for the outdoor (EuP, 2009). Any design 

improvements in the fan which seek to improve the air flow characteristics can have a marked reduction 

in power demand from the fan motor and thus increase the overall efficiency. It is important to note, 

however, that any design changes to improve air flow must be developed in the context of space 

limitations of in-room air conditioners and that any design changes in the heat exchanger may lead to 

alterations in the air flow.     

 

Figure 2-8: Types of Different Fans 

Source: Corry, 1992 

Fan motors and drive: The same advances discussed for compressor motors are applicable to fan 

motors, except that because the average input power needs are lower, the relative gain in motor 

efficiency is higher (due to the poorer average efficiency of low power motors compared to higher power 
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motors). The efficiency of a standard 100W AC fan motor can be dramatically improved upon through 

the use of a DC motor with advanced features such as 6 or 8 poles instead of 4, or rare-earth magnet 

types. With the best available technologies reaching more than 80% motor efficiency, as is the case of 

the efficiency of compressor motors (ECCJ, 2006). This evolution in fan motor efficiency is illustrated in 

Figure 2-9 below.  

 

Figure 2-9: Evolution in Japanese air conditioner fan motor efficiency 

Source: ECCJ, 2006 

Axial or propeller fans: The efficiency of propeller fans has improved significantly. Older versions were 

made of processed metals, whereas plastics are now used in the more efficient models. The shape has 

also progressively evolved in order to increase the volumetric efficiency and achieve a reduced noise 

level. 

This evolutionary process moving from a 2D wind in the mid/late 1970s to a hybrid wind design in the 

late 1990s/early 2000s is summarized by Figure 2-10. 
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Figure 2-10: Evolution of Axial/Propeller Fan Design 
Source: ACESS, 2008 

More recent developments include design adaptations in order to cope with operation in extreme cold 

weather conditions which induce a higher static pressure condition on the coil when frozen. This is 

illustrated in Figure 2-11 below.  
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Figure 2-11: Axial Fan Design for A/C Condenser under High Static Pressure 

Source: Daikin, 2007 and EuP, 2009 

Cross flow fans: The mechanical efficiency of cross flow fans tends to be about half of that currently 

achieved by axial fans in standard split air conditioners. An attempt to increase air volume has been 

made through the introduction of plastic blades with a wing-shaped section and increasing the fan 

diameter, which improves efficiency while controlling noise. Improvements in the layout and molding of 

the fan and blades have been achieved by introducing spacing between blades as well as angling the fan 

shaft. This cross flow fan blade design is illustrated in Figure 2-12.  

 

Figure 2-12: Latest Design of Cross Flow Fan Design 
Source: ACESS, 2008 

Centrifugal fans: the use of forward blades has a lateral fix with a mechanical efficiency of 40%. The use 
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of central fix rotors in centrifugal fans can improve the mechanical efficiency from 40% to 60% (EuP, 

2009).  

Reduced pressure losses: There is inevitably a trade-off in achieving a performance increase in the heat 

exchanger with a higher level of compactness and an increase in air-side pressure drops and related fan 

power consumption. As such all these considerations must be weighed-up when finalizing the overall 

system design.  

Turbo Fans: The use of turbo fans is typical in the cassette indoor unit. The turbo fan has undergone 

significant improvements with the integration of three-dimensional blades, as illustrated in Figure 2-13 

(ACESS, 2008).  

 

Figure 2-13: Turbo Fan with 3-D Blades 

Source: ACESS, 2008 

2.3.1.3 Heat Exchangers 
The thermodynamic cycle efficiency of air conditioners increases when the difference in the refrigerant 

evaporating and condensing temperature decreases. This difference is primarily constrained by the 

outdoor fluid temperature; however, to a lesser effect it is due to the temperature difference between 

the refrigerant and the outdoor fluid. This can be reduced by improving the performance of the heat 

exchanger, in which case the compressor will operate more efficiently than at rated conditions.  

The simplest means of doing this is to increase the heat transfer area by increasing the frontal area of 

the coils and/or the number of rows of tubing in the coil. This, in turn, tends to increase the amount of 

copper used in the tubes and the amount of aluminum used in the fins, as well as usually raising the 

amount of refrigerant charge. An increase of the heat exchange area by 80% (by increasing the number 

of tubes while maintaining a constant horizontal tube spacing as well as other physical coil parameters), 

achieves a 35% increase in the efficiency of the unit (not accounting for the fans) when the air flow rate 

is set at constant and thus the air speed at the coil first tube row is reduced by a half. The improvement 

in compressor efficiency is approximately 80% with a constant air speed at the coil, although this 

requires the air flow rate to be doubled. Higher air flow increases noise so there can be a trade-off 

between the increased heat transfer efficiency and increased noise. Furthermore, increasing the heat 

exchanger surface area tends to increase the size and weight of the coils and their housings. 
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Figure 2-14 (below) shows the evolution in the size of the indoor and outdoor units of Japanese mini-

splits in response to the rapid increase in efficiency required by the Top Runner program. In Japan in 

order to achieve an efficiency improvement from COP 2.8 W/W to COP 6.2 W/W (EER + COP / 2), the 

mass of both heat exchangers increases by about 50%. It is estimated that heat exchanger improvements 

may have accounted for half of the overall efficiency gain. Recent data demonstrates that manufacturers 

have found methods to reduce the mass of the heat exchangers while maintaining the same efficiency 

levels, however, the dimensions remain the same and in some cases have increased (ECCJ, 2006). 

 

Figure 2-14: Evolution in mass and dimensions of 2.8 kW AC units in Japan 

Source: ECCJ, 2006 

The effective heat exchange area can also be enhanced by increasing the density of the cooling fins. 

When evaluating the use of reversible units, it is important to note that there is a trade-off between an 

increased performance in cooling mode and a decrease in performance under frosty conditions in the 

heating mode. Moreover, in the cooling mode, an excessively high cooling fin density can result in 

intensified coil fouling.  

Increased heat transfer efficiency  

Resistance to heat exchange between refrigerant fluid and air can be decreased by improving the 
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refrigerant tube or fin design. The conduction efficiency of refrigerant tubing made out of high quality 

copper is already very high. 

Heat transfer rates increase when cooling fin patterns evolve from smooth to louvered and variegated 

surfaces. It is thought there is a potential to improve AC efficiency by a further 10% through the use of 

optimized slit fins in place of plain fins. Several fin patterns have been introduced to maintain good heat 

transfer quality while achieving lower noise levels and lower production costs. It is thought more recent 

evolutions in fin design may introduce air-side heat transfer gains of greater than 2 compared to plate 

fins. The various patterns which have evolved through time (from left to right, i.e. A to E) are presented 

below in Figure 2-15.  

 

Figure 2-15: Fin Pattern Evolution 

Source: Daikin, 2007 and EuP, 2009 

 

Adoption of the latest inner-tube design patterns enables heat transfer resistance to be cut by a factor of 

four compared to smooth tubes. This evolution is also coupled to a decrease in the tube diameter and 

thickness. In order for the increase in heat exchange to not be overly detrimental to drops in the 

refrigerant pressure within the heat exchangers, the diameter of the copper tube is adapted to the 

refrigerant conditions, so that larger diameters are used for the gaseous state and lower diameters for 

the liquid or diphasic state (ECCJ, 2006). These measures also enable the refrigerant charge to be 

decreased. The most recent evolutions are thought to increase refrigerant-side heat transfer gain by a 

factor of more than three compared to that achieved using tubes with smooth plates. The evolution of 

the inner refrigerant copper tube design is illustrated in Figure 2-16 below.  
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Figure 2-16: Evolution of copper tube designs for indoor coils in Japan 

Source: Daikin, 2007 and ECCJ, 2006 

 

Micro-channel heat exchangers: the micro-channel heat exchangers are made using flat tubes which 

have a rectangular cross section of 1-3mm. The fins are brazed to the tubes and run between them. As a 

result, the micro-channel coil system transfers a greater proportion of heat per unit of face area than the 

conventional heat exchangers of equivalent capacity.     

It also achieves this with a lower airside pressure drop and thus lowers fan power consumption. It 

therefore presents an opportunity to decrease the material required and thus enable the units to 

increase their equivalent heat exchange areas at a constant cabinet size. In principle the refrigerant 

charge could be decreased by 20 to 40% for packaged units for a coil of equal capacity. At the same time 

heat exchanger performance can be increased by 10% for an equal front coil area compared to the 

traditional round tube and fins air coils. This innovation has been anticipated for a long time and has 

been adopted in air conditioning systems used by the car industry for over five years. One of the 

problems for the application of micro-channel heat exchangers within reversible split air conditioning 

units is that it prevents condensate coil drainage and may have a negative effect on heat pump 

evaporators; however, such technology has been successfully applied in cooling-only chillers. Despite the 

aforementioned advantages, micro-channel heat exchangers do not seem to be a technical option for 

improving the efficiency of split or single duct air conditioners (at present). Several central air 

conditioner manufacturers in the US seeking to achieve high SEER units use micro-channel heat 

exchangers. It is thought they are primarily used for the indoor heat exchanger and not the condenser 

since they would increase EER in cooling mode but may decrease COP in frost conditions. 

Evaporative cooled condensers: Spraying water on the outdoor air or refrigerant heat exchanger 

facilitates an improved thermodynamic performance of the heat exchanger in dry climates. The 



 

 

38 

efficiency of this option is highly dependent on the outdoor air temperature and humidity content.  

Adding Subcooler to Condenser Coil 

Subcoolers are integrated between the capillary tube inlet and the condenser coil outlet. They are 

typically immersed in the condensate created by the evaporator and lie in close proximity to the 

condenser system. The addition of the subcooler acts to increase the scale of the condenser coil, 

however, it does have the added benefit that it provides additional cooling for the refrigerant leaving the 

condenser. The main challenge lies in accommodating the larger condenser coil system into the tight 

residential air conditioning unit.  In a simulation model developed by the European Commission 

Directorate General for Energy (DGXVII, 1999) they evaluated the impact of the addition of the subcooler 

to the condenser coil and it emerged that a potential 1% increase in EER could be achieved by its 

integration.   

In the DOE’s energy model which was used to evaluate the addition of the subcooler it confirmed the 

European Commission’s earlier work that the subcooler can make a small improvement in efficiency 

while still being cost effective and not requiring a change in the chassis size.   

Hydrophilic Film Fin Coating 

The formation of water condensate upon the heat exchanger fins causes a bridging effect between the 

fin spacing. This results in a decrease in the heat transfer performance as well as an increased drop in air 

pressure. The addition of the hydrophilic coating on the heat exchanger fins reduces the thickness of the 

condensate layer and enables an increased ability for the water to drain off the fins allowing a reduced 

air side pressure drop and an increased airflow across the heat exchanger. In the US it has been shown 

that the use of such a hydrophilic film coating on the heat exchanger fins can reduce the pressure drop 

between 20-50% when operating in high humidity room-side air environments (TSD, 2010b).    

2.3.1.4 Expansion Devices 
In order to create high and low pressure states in a refrigeration cycle an expansion valve is used. The 

role of the expansion valve is to control the flow of fluid into the evaporator. In standard efficiency air 

conditioning equipment, the expansion of the refrigerant between the condenser and evaporator is 

made through a pressure loss produced by restricting the diameter of the piping; either by an orifice of 

constant diameter or a capillary tube of a given length. Such low cost solutions enable the superheat to 

be controlled relatively efficiently at the rated design condition. Because, however, the superheat is 

uncontrolled away from the design point, it is necessary to design the product for relatively high 

superheat values (typically in the order of 5 to 10K (EuP, 2009)) to avoid harmful liquid suction at the 

compressor inlet. There are several means to improve the performance of the expansion device under 

various design operating conditions.  

Thermostatic expansion valves (TXV) adjust the refrigerant mass flow rate in order to achieve an almost 

constant level of superheat whatever the operating conditions are. When TXVs are appropriately 

designed and integrated, the design superheat can be reduced to 4 to 7K (EuP, 2009). The superheat is 

controlled by the equilibrium of three system pressures: the condenser side pressure; the evaporating 

pressure; and the pressure related to the superheat temperature. This can lead to small variations 
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around the set point depending on the evaporating pressure. Moreover, at very low load, there are 

stability problems that may lead to the shunting of the valve and significant energy losses. TXV also help 

to block refrigerant migration when the compressor is cycling and thus produce additional energy 

savings at part load. As a result the CD coefficient12 decreases from a typical 0.2 level to less than 0.14 

(EuP, 2009). Further gains can be obtained with an electronic expansion valve. In this case design 

superheat can be as low as 2K which allows the CD coefficient to decrease to 0.10 or lower. 

The electronically controlled expansion valve enables a correct and adaptable level of throttling based on 

electronic signaling from a micro-computer which determines the air conditioner operating state. A 

pulse motor fed by an electronic signal is used to control the valve, which in turn controls the degree of 

throttling. This enables the efficient control of the refrigerant flow, depending on the operating state. 

The operating characteristics are similar to the TXV except for the increased precision achieved by the 

electronic valve which in turn enables lower superheat values and the ability to overcome the limits of 

the TXVs thermo-mechanical design. As is the case with the variable speed compressors, the key benefit 

of electronic expansion valves is the improvement of seasonal energy efficiency. An added benefit of the 

electronic expansion valve (as with TXV with hermetic closure) is the capability to stop refrigerant 

migration under on/off cycling or when the unit is off. A schematic representation of the electronically 

controlled expansion value is illustrated in Figure 2-17 below.    

 

Figure 2-17: Electronic Expansion Valve Schematic 

Source: ACESS, 2008 

 

                                                   

 

12 CD is the “Cyclic Degradation Coefficient”, often used in measuring the performance of the system at part load. A low CD 
implies better performance at part load. 
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2.3.1.5 Crankcase Heater  
Crankcase heater consumption is the second largest consumption cause for reversible air conditioners in 

Europe with the assumption that the heater is cut at 10 °C outdoor. The oil heater maintains the oil 

temperature higher than in the other parts of the system to avoid high refrigerant concentration levels 

in the oil. (EuP, 2009) discusses how far the crankcase heater consumption may be reduced.  

By keeping track of representative temperatures of the oil sump and of the outdoor unit, it is possible to 

cut energy consumption by 50 % (Daikin, 2006) by using this control in addition to an outdoor air 12 °C 

control. The drawback to this approach is that it necessitates more electric circuitry that increases 

standby and off mode power. In addition, though crankcase heating is only necessary before start-up, 

and only in cold climates, the time required varies by system, and climactic conditions. By installing a 

solenoid valve before the expansion valve or using an electronic expansion valve that can close and 

remain refrigerant tight, it is possible to pump down the evaporator before the compressor is cut.  

 

Further, since the oil heater is generally located outside the compressor shell, the greater part of the 

energy supplied by the crankcase heater is wasted. Compressor and equipment manufacturers use 

electrified stator coils that allow reduced crankcase heater power. Best available technologies, following 

(EuP, 2009) consume about 10 W for 2.8 kW and 25 W for 8 kW split units respectively equipped with 

rotary vane single and double stage compressors, i.e. about 3.5 W per kW cooling. 

 

Also, manufacturers are employing various control strategies to reduce the power consumption of the 

crankcase heater. Either the control temperature is lowered, or (and) the control is improved by heating 

as a function of the difference between oil sump temperature and indoor refrigerant temperature, or 

(and) the crankcase heater is used only to preheat before operation, which can be done with no 

decrease in end user comfort conditions.  

 

It appears that the best strategy for reducing crankcase heater power consumption would be to use the 

crankcase heater only before the heating function, removing it from off mode functions and to a great 

degree from standby power consumption. (EuP, 2009) estimates that the best available technologies 

enable a reduction in the preheating power consumption by a factor of 6 from current levels. 

2.3.1.6 Standby Power 
The best commercially available reversible split-packaged Room ACs currently consume 0.7 W in standby 

mode. According to (EuP 2009), standby power consumption could be reduced to 0.3 W for the indoor 

unit by switching off functions other than the reactivation function. For the outdoor unit standby power 

depends climate conditions and on the size of the crankcase heater. For larger capacity units which 

could have several indoor units, the same technology that is used for small split systems could enable 

the outdoor unit standby power consumption to reach 0.4 W depending on the crankcase heater size. 

Further, a hard off switch could help to reach 0 W off mode. Even in case a timer program is used, there 

are options available to drastically reduce these values (EuP 2009) to 0.3 W and lower. 

2.3.1.7 Improvement of Thermodynamics Cycle 
Improved operation at low outdoor air temperature: Improvements in the cycle are expected to 

improve the performance of air-to-air heat pumps operating in heating mode at low ambient 
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temperatures. For air-based heat pumps, an injection of vapor at an intermediate suction port in the 

compressor can produce an increase in heating capacity at lower ambient temperatures and a slight 

associated increase in COP. Figure 2-18 shows the heating capacity of a Mitsubishi air-based split heat 

pump that is achieved via the combination of an inverter controlled scroll compressor (enabling higher 

frequency cycling at lower ambient temperature) using additional vapor-injection as described above. 

Full design capacity can be maintained until –15°C with a COP increase likely to lie between 2% at 2°C 

and 15% below –7°C as compared to operations at high frequency and low indoor air temperature (EuP, 

2009).  

 

Figure 2-18: Variation of heating capacity as a function of outdoor air temperature of an air-based heat 
pump with vapor injection 

Source: EuP, 2009 

The use of expanders is thought to yield up to a 30% cycle improvement (EuP, 2009). Ejectors that make 

use of the flash kinetic energy to lower the compressor lift also appear to be a promising technology. 

These cycles are, however, still at the prototype level and require further development. The heat pump 

cycle improvements for low ambient are illustrated in Figure 2-19. 
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Figure 2-19: Improvement for low ambient heat pump cycle-  Expander cycle, (b) Refrigerant ejector 
cycle, (c) vortex tube cycle 

Source: Cremaschi, 2007 and EuP, 2009 

The diagram in Figure 2-20 (below) illustrates a modification on the outdoor air coil of a VRV system in 

order to improve its efficiency at low outdoor air temperatures, namely frosty conditions. This air-

conditioner design employs a heat exchanger with a 15% larger frontal area compared to a conventional 

heat exchanger. This acts to enhance the heat exchange performance at lower temperatures. The tubing 

in the heat exchanger is adapted such that the tubes in the lower half provide a protection against the 

frost at lower temperatures. It is worth noting that this heat exchanger design has defined larger 

refrigerant paths in comparison to a typical heat exchange system in its class. The reason for this is to 

limit the pressure loss during heating as well as ensuring the prevention of frost formation at the bottom 

where the temperature is regulated to avoid formation of frost during the heating operation.    
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Figure 2-20: Outdoor Piping Modifications to Increase Frost Condition Performance 

Source: EuP, 2009 and Daikin, 2007 

Furthermore, as the water which is removed by the defrosting operation typically freezes at the bottom 

of the unit, it is likely this will ease the frosting of the coil. A solution to this is proposed by the 

manufacturer Daikin who has developed a freeze prevention pipe solution as illustrated in the diagram in 

Figure 2-21 below.  

 

Figure 2-21: Freeze Prevention Pipe for Outdoor Unit Bottom Pipe 

Source: EuP, 2009 and Daikin, 2007 

Other thermodynamic cycle improvements: In order to improve the thermodynamic cycle performance 

at lower temperatures there is also the option to use internal heat recovery using a sub-cooled 

refrigerant and a vapor suction heat exchanger. It has been suggested, however, that it would be 

necessary to short-circuit the heat exchanger during periods of high outdoor air temperature as well as 

during cooling mode to prevent the loss of any efficiency gains which could lead to a fall in the overall 

energy performance (EuP, 2009). The adapted cycle including the liquid vapor heat exchanger schematic 

is presented in Figure 2-22.  
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As for the expansion turbine, it makes it an unlikely option for all fluids apart from CO2 where either one 

of the two options could be used to achieve improvements in the basic cycle efficiency.  

 

Figure 2-22: The modified cycle including liquid vapor heat exchanger schematic 

Source: EuP, 2009 

2.3.1.8 Refrigerant Fluid 
There are a limited number of refrigerant fluids which can be used for room air conditioners. This is 

mainly confined by the large number of criteria which the refrigerant fluid must meet. Such criteria 

include: energy performance, safety, ozone depletion potential (ODP), global warming potential (GWP); 

technical constraints in terms of the fluid not interacting with the components of the system and 

economic constraints. Until the phase out of chlorofluorocarbons (CFCs) and hydrochloroflurocarbons 

(HCFC) R22 was the universal refrigerant fluid of choice. After much research, replacement options have 

and are being developed.  

Choice of Refrigerant: The most efficient air conditioners in Europe, Japan and the USA now use R410A 

as it offers a significantly greater compactness and thus potential to increase the heat exchange area and 

therefore the efficiency. R410A is now the refrigerant of choice for advanced air to air appliances in all 

major air conditioning markets. Figure 2-23 illustrates the importance of refrigerant charge (mass) and 

energy efficiency for air conditioner devices using R410A. 

The relative increase of the heat exchanger size for high efficiency models normalized by the rated 

capacity of the unit is the direct consequence of the increase of the refrigerant mass per kW cooling. 

This graph (Figure 2-23) illustrates that, in general, a doubling of energy efficiency is achieved by 

doubling the refrigerant charge. 
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Figure 2-23: Relationship between efficiency and refrigerant charge per kW of cooling capacity 

Source: JRAIA, 2006 

The spread in values around the best-fit linear regression is a result of the use (or not) of smaller tube 

diameters compared with standard coil technology, or the transition to micro-channel technology which 

can help to limit the refrigerant charge per unit of cooling capacity. Micro-channel heat exchangers have 

the potential to reduce the refrigerant charge as much as 20 to 40% for a comparable efficiency to air 

conditioner devices that do not use this technology (EuP, 2009). 

2.3.2 Other Options 

2.3.2.1 Smart Grid Coupling 
The smart grid is a response from governments, grid operators and users to update the ageing electricity 

power infrastructure so it can better accommodate increased electricity demand; manage the limited 

supply of electricity; help regulate emissions; and allow for technological evolution. In essence the smart 

grid uses advanced digital information based technologies to increase the grid efficiency, flexibility, 

reliability and reduce the need for an increase in power grid capacity. The smart grid makes use of 

products and services which can provide intelligent monitoring, control, two-way communication and 

adaptation. 

The idea of having two way communication between consumers and suppliers in order to control 

appliances is not new and has existed through analog systems for many years, however, the rapid 

development of the internet has enabled the use of a more well developed and equipped smart grid 

system. The increase in data, knowledge and information transmission capacity adds a new dimension to 

the two-way measurement, control and communication between all grid users at a more granular level. 

Devices such as smart meters are capable of communicating information on the state of the grid to 

users, operators and automated devices allowing for smaller energy consumers to respond to the grid 
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conditions.  

Manufacturers are continually developing devices which provide active feedback on electricity use and 

prices for energy consuming devices within the home. Highly developed smart grid enabled homes can 

incorporate smart grid sensors and feedback devices that respond to price change alerts from utility 

companies. For example, if a utility company issues a demand response message in the form of a price 

signal change, the smart meter relays this message to the residence. In this case there are several 

options available which depend on the set-up established by the home user: 

 Continue to use electricity at the same rate 

 Alter consumption to reflect the price change e.g. if the price rises then the user could evaluate 

the situation and decide to reduce or turn off the air conditioner device 

 The automated system receives the demand response message through a gateway and 

implements a pre-configured energy-saving strategy which could include increasing the 

thermostat cooling set point in conjunction with lowering the sun facing shades. This automated 

system can be accessed by computer or mobile device and manually override the system’s 

actions if necessary. 

 

Such devices provide utility companies and consumers the ability to have contract agreements in place 

which enable the utility companies to automatically reduce the consumption of energy using devices 

such as air conditioners in response to the grid nearing maximum capacity.  

The development of smart grid applications, like diagnostic tools, help optimize the operation of energy 

using devices and fix errors.  

Mitsubishi was one of the first manufacturers to develop the smart air conditioner which displays the 

CO2 emissions and electricity costs on an indoor panel as well as having occupancy sensor functionality 

(JFS, 2009). 

The deployment of the smart grid would result in energy saving improvements from generation source 

to end-use of the electrical grid. This can be attributed to the reduced transmission and distribution line 

losses; improved and more efficient voltage control; and lower building energy consumption. It is 

important to note however, that significant investment remains before the smart grid infrastructure is 

able to perform as an effective demand response program that achieves substantial energy savings.  

As part of a 2009/2010 pilot scheme13 Honeywell Building Solutions distributed load management 

technologies such as smart thermostats and switches to homes in Topeka, Kansas and Milwaukee, 

                                                   

 

13http://www51.honeywell.com/honeywell/news-events/press-releases-
details/9.9.10DemandResponseProgramsForTwoMidwestUtilities.html 

http://www51.honeywell.com/honeywell/news-events/press-releases-details/9.9.10DemandResponseProgramsForTwoMidwestUtilities.html
http://www51.honeywell.com/honeywell/news-events/press-releases-details/9.9.10DemandResponseProgramsForTwoMidwestUtilities.html
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Wisconsin. The technology allowed the participating utilities (Westar Energy, Topeka and We Energies, 

Milwaukee) to control the cycles of air conditioners in these homes, turning them on and off at intervals 

during the day. The aim of the pilot was to lower the energy bills of the participating homes and assist 

the participating utilities by decreasing energy consumption when demand was at its peak. 

The program hopes to reduce energy bills by up to 20% and the utility’s energy load by 30 megawatts 

over three years in Topeka and 38 megawatts in Milwaukee. 

In 2007 a demand response pilot project14 was run by CCET (Center for the Commercialization of Electric 

Technologies) in Dallas and Houston residencies. It joined retail electric providers, transmission and 

distribution service providers and demand response-enabling technology providers. The 346 

participating homes were provided with programmable, communicating thermostats which controlled 

air conditioners, pool pumps and water heaters.  The program recorded demand reductions of 0.6 kW 

for houses in Dallas in the late Summer/early Autumn of 2008 although the study predicted that up to 1 

kW could have been achieved had Hurricane Ike and some technology failures not occurred. 

Con Edison New York offer their customers a free Carrier programmable thermostat as part of a demand 

response/central air-conditioning incentive program15. The program is available to home owners, 

religious institutions and businesses. The program pays the participant between $0.50 and $1.50 for 

each kWh reduced, and bonus payments for energy reductions during emergency events. Penalties may 

apply if reductions are not achieved. 

2.3.2.2 Occupancy Sensors 
The use of occupancy sensors can have a marked reduction in energy use by simply switching off the 

electrical loads of energy using devices when occupied areas are vacated or inactive for prolonged 

periods of time. While such sensors can be used to control a variety of load types in residential premises 

they have most aptly been used in commercial lighting.  

Manufacturers and research institutions are actively researching the area of smart sensors in two areas, 

first in order to develop integrated sensors for energy devices and secondly to develop a series of 

intelligent sensor networks around the home to predict occupancy patterns for equipment optimization 

and to generate energy savings. 

Efforts in the United Kingdom include the development of a newly emerging generation of smart 

environments referred to as predictive ambient intelligence environments which seek to learn from not 

only environmental changes but also occupant behavioral patterns. It is thought that this predictive 

feature can improve the performance of energy saving approaches in a smart environment as well as 

                                                   

 

14 http://www.electrictechnologycenter.com/dr_project_summary.html 
15 http://www.conedprograms.com/ 

http://www.electrictechnologycenter.com/dr_project_summary.html
http://www.conedprograms.com/
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enhance occupants’ comfort, safety and security. There are two main challenges facing these advanced 

occupancy sensor networks, these are data collection and prediction. The challenges in data collection 

are due to the energy and bandwidth constraints in sensor networks and the second is the complexity of 

learning in a distributed sensor network (Akhlaghinia et al., 2008). 

Other manufacturers such as Mitsubishi Electricity Corp of Japan have developed room air conditioners 

equipped with integrated infra-red sensors. These sensors scan the visual field and detect the location of 

its occupants within the room as well as the temperatures of the floor and walls forming a database of 

thermographic data. The intelligent sensor processors are designed to optimize these inputs in order to 

yield energy savings while maintaining occupant comfort. When the room is occupied, the regulation of 

airflow for efficient operation is thought to yield up to a 40% reduction in electricity consumption and 

when the room is not occupied the system switches to an “energy-saving mode” which further reduces 

the energy use by 10% (JFS, 2007).  

Such technologies are undergoing continual research and development and are increasing in 

“intelligence” resulting in an optimized living environment as well as increased energy savings. 

2.3.2.3 Climate Specific Efficiency Improvement Options 
Some room AC efficiency improvement options are climate-specific in that they either are only feasible 

in certain climates or reduce AC energy consumption variably depending on the climate. Such options 

are presented in more detail in Appendix A, and summarized below: 

Evaporative Cooling 

Evaporative air conditioning (EAC) technologies are becoming increasingly popular in residential as well 

as commercial applications in countries with hot, dry climates. 

EAC systems use water as the coolant as opposed to chemical refrigerants. EAC can provide superior 

ventilation and cooling over the traditional vapor compression air conditioning (VAC). However, unlike 

VAC systems which are capable of operating under a wide variety of climatic settings, EAC varies in 

effectiveness and efficiency with the relative humidity of the outside air. EACs have the added benefits 

that they reduce the requirement for traditional high ODP/GWP refrigerants, avert CO2 emissions and 

reduce the peak electricity demand.  

The Optimal operation for EACs is in hot, dry climates although they are applicable in more humid 

climates. EACs are widely used in the South Western US, Middle East, Australia, the Indian subcontinent, 

Eastern Africa and northern Mexico16. 

Evaporative coolers can use up to 75% less electricity than conventional air conditioning which can 

equate to $150 a year savings on electricity bills, this invariably depends on the climate of the building, 

                                                   

 

16 http://www.coolmax.com.au/evaporative-cooling/evaporative-cooling-areas.htm accessed 05/04/2011 

http://www.coolmax.com.au/evaporative-cooling/evaporative-cooling-areas.htm
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for hotter desert like climates savings could be even higher (source:17) These systems do not use CFCs or 

any other ozone harming compounds and cost less to operate than conventional air conditioners 

including the initial cost of the unit and the installation costs. Another benefit of evaporative coolers is 

that they do not re-circulate ‘old’ air like other systems, rather they facilitate a complete air change every 

1-3 minutes (source:18). 

Drawbacks to the system include the high consumption of water, between 3.5 and 10.5 gallons per hour 

of operation; regular maintenance, units are often noisy; units can drip water and leak; and the units are 

less effective in high humidity climates and should only really be used in hot dry climates19. 

Free Cooling for Window/Louvered Air Conditioners  

Window (Europe) or through-the-wall (USA) package air conditioners are typically able to use cold 

outdoor air (during cooler periods such as nighttime) to free cool when the conditions are appropriate. 

Such systems use what is known as an economizer cycle, which has existed for several years.  

Free cooling demonstrates the potential role of ventilation in securing indoor comfort without the need 

for mechanical cooling systems, although it is important to note that free cooling need not be viewed as 

an alternative to mechanical cooling. Indeed, it can be used in a complementary and supportive role for 

conventional air conditioning units with many studies demonstrating that significant energy savings of 

between 44% and 63% can be achieved with the use of free cooling in different climatic conditions.  

There are, however, certain drawbacks and barriers which need to be weighed up; these include the cost 

of installation, introduction of outside noise and the need to include air treatment, which may be 

necessary to prevent air pollution being drawn in from the outside. It is also important to note that the 

energy saving benefit of a “free-cooling” option is not recorded under standard energy performance test 

conditions and hence is not reflected in energy efficiency ratings. 

Storage of Cooling at Night 

Thermal storage technology is essentially the principle attached to materials which have the capacity to 

retain heat for a sustained period of time, often in the range of hours to a few days. A critical parameter 

is the material mass as it is reflective of the materials ability to retain heat – residential construction 

materials such as masonry exhibit this heat retention property.  

Some storage materials are selected and situated so they can store cooling by drawing out the heat from 

the surrounding residential atmosphere, effectively cooling the spaces they occupy. The basic principle 

of night storage of cooling is to take advantage of the lower ambient temperatures at nighttime in order 

                                                   

 

17 http://www.consumerenergycenter.org/home/heating_cooling/evaporative.html accessed 04/04/2011 
18 http://www.toolbase.org/Technology-Inventory/HVAC/evaporative-coolers accessed 05/04/2011 
19 http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-
homes-1001.html accessed 05/04/2011 

http://www.consumerenergycenter.org/home/heating_cooling/evaporative.html
http://www.toolbase.org/Technology-Inventory/HVAC/evaporative-coolers
http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-homes-1001.html
http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-homes-1001.html
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to accumulate low grade cooling energy and the cool radiant effect of chilled ceilings. Then the stored 

energy, referred to as cooling or coolth is gradually released during the daytime through radiation and 

convection. A recent study discussed in Appendix A found that cooling storage using such methods 

reduced AC energy consumption by over 21 %.( Wang et al., 2005) 

Radiative cooling – Cool Roofs 

Roofing material with low reflectivity values tend to adsorb heat from sunlight rather than reflect it back 

into space. Roofing material with high emissivity will radiate any stored heat quickly.  “Cool roofs” exploit 

these two phenomena by using combinations of high‐reflectivity and high emissivity materials to 

minimize the amount of sunlight that is converted to heat in the roof material and maximize the amount 

of heat that is radiated away from the roof. 

Studies have shown that reflective roofs are most effective where there is a high roof to volume ratio 

and that savings are greatest for buildings located in climates with longer cooling seasons and short 

heating seasons. Furthermore, many of these studies have shown that by raising roof reflectivity from 

10‐20% to about 60% cooling‐energy use in buildings can be reduced in excess of 20% (Memon et al., 

2008).  

The benefits in equatorial, arid and warm temperate climates have led to incentive programs, product 

labeling and standards to promote cool roofs. 

Shading with vegetation 

Plants, trees, and vegetation increase shading over the surface they occupy, blocking sunlight/heat from 

that surface. The heat that reaches either the greenery or the ground beneath it can often be dissipated 

through evapotranspiration – heat in the surrounding air/surfaces is used to evaporate the water. Often 

such greenery and its cooling effects are exploited in buildings such as “green roofs” on roof tops or 

strategically designed/naturally occurring “trees and vegetation” around buildings and urban spaces. 

Thanks to the natural processes of shading and evapotranspiration surfaces such as greens roofs stay 

cooler than conventional rooftops under summertime conditions.  

In a study of green roofs the roof temperature of a standard flat roof was measured at 90ºF and 

compared to a 60ºF temperature which was recorded below the vegetation on an adjacent area of green 

roof.  In previous studies it was observed that a 3-7ºF drop in temperature could reduce air conditioning 

loads by 10%, so taking this into consideration, if a green roof was installed on a one story building it 

could reduce air conditioning costs by up to 30% (Borgese, 2008). 

It is, however, generally accepted that the use of urban trees and vegetation could face heat penalties in 

cold climates but reduce energy in hot climates. 
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Chapter 3. Room AC Market and Energy Consumption Trends 

In this chapter we discuss market, energy consumption and technology trends for Room ACs, including 

the dominant type of ACs, sales trends and the efficiency levels of ACs in each economy. 

3.1 Split Packaged ACs Are the Dominant Type of Residential Air Conditioner 

The global Room AC market is dominated by split-packaged (known in the US as mini-split) air 

conditioners. Based on a variety of data sources, Table 3-1 below presents the percentage of air 

conditioners in each market that are split-packaged units. In all markets except the US, split packaged 

ACs compose at least 62%( in India) to approximately 100% of the market. 

Table 3-1 Percentage share of split packaged ACs of Room AC market20 

Country 
% split 

packaged 
Data Type 

Sample 
Size 

Australia 76.0% Government Data    

Brazil ~100% Catalog 45 

China 99.0% Government Data   

EU 84.8% Sales Average   

India 62.6% Sales Average   

Japan ~100% Catalog 307 

Korea 99.0% Government Data   

Mexico 79.0% Catalog 82 

Russia ~100% Catalog 99 

South Africa 91.0% Catalog 51 

UAE 79.0% Catalog 67 

USA 2.0% AHRI(Industry Data)   

 

  

                                                   

 

20 Data shown in table 3-1 are based on a) samples obtained from catalog searches in the following economies: Brazil, Canada, 
Mexico, Russia, South Africa and the UAE, b) from the CLASP Mapping Report for China, EU, India, Japan and the USA, and c) 
from the IEA 4E Mapping Reports for Australia and Korea. (Baillargeon, 2011, IEA 4EM&B, 2010) 
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3.2 Average Capacity 

Table 3-2 shows the average cooling/heating capacities of split packaged ACs sold in various economies. 

Average capacities range from 3.33 kW in China to 6.64 kW in the UAE, and reflect a number of factors 

including average room sizes, incomes and climates in the various economies. 

Table 3-2 Average Cooling (or Heating) Capacities in Various Economies21 

Country 

Average 
Cooling ( or 

Heating) 
Capacity 

(kW) 

Data Type 
Sample 

Size 

Australia 4.80 Government Data    

Brazil 4.07 Catalog 45 

Canada 5.29 Catalog 139,210 

China 3.33 Government Data   

EU 5.70 Sales Average   

India 5.50 Sales Average   

Japan 3.67 Catalog 307 

Korea 5.90 Government Data   

Mexico 5.60 Catalog 82 

Russia 4.93 Catalog 99 

South Africa 5.42 Catalog 51 

UAE 6.64 Catalog 67 

  

                                                   

 

21 Data shown in table 3-2 are based on a) samples obtained from catalog searches in the following economies: Brazil, Canada, 
Mexico, Russia, South Africa and the UAE, b) from the CLASP Mapping Report for China, EU, India, and Japan and c) from the IEA 
4E Mapping Reports (Baillargeon, 2011, IEA 4EM&B, 2010) for Australia and Korea. 
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3.3 Significant Potential for Efficiency Improvement Exists 

The average energy efficiency of unducted mini-split ACs(a subset of split packaged ACs) which form the 

majority of global residential air conditioners in every country except the United States, varies from an 

average EER of 4.1 in Japan to an average of 2.69 in the UAE as shown in table 3-3 below. The Japanese 

market has the most efficient air conditioners that are commercially available, with a maximum EER of 

6.67 W/W, and an average of 4.1.  

Even though the data presented in Table 3-3 are illustrative and cannot be compared directly across 

countries due to lack of availability of overlapping data sets and minor differences in test procedures, 

these data can be compared within each country studied. Table 3-3 clearly and unequivocally show that 

there is a significant gap in efficiency terms between the best available split package AC in each economy 

and the average AC in that same economy. If the best available technology available globally is 

considered, it is even more evident that there is significant room for improvement in Room AC efficiency 

in all the economies, even if only ACs currently available on the market are considered. 

Table 3-3 Average EERs of unducted split-packaged ACs in various economies in 2010-

2011(illustrative)22 
 

 
EER (W/W) 

Country Min Max  Average  

Australia 2.67 4.88 3.16 

Brazil 2.92 4.04 3.19 

Canada 2.14 4.33 3.6 

China 2.9 6.14 3.23 

EU 2.21 5.55 3.22 

India 2.35 3.6 2.8 

Japan 2.37 6.67 4.1 

Korea 3.05 5.73 3.78 

Mexico 2.42 4.1 2.92 

Russia 2.5 3.6 2.79 

South Africa 2.28 5 2.91 

UAE 2.14 3.22 2.69 

USA - 4.6 3.04 

                                                   

 

22 This data should be treated as illustrative as no overlapping datasets were available to cross-check these data points. Data 
shown in table 3-3 are based on a) samples obtained from catalog searches in Brazil, Canada, Mexico, Russia, South Africa and 
the UAE, b) from the IEA 4E Mapping and Benchmarking Analysis for Australia c) from the CLASP Mapping Report for China, EU, 
India, Japan and the USA, and d) from the IEA 4E Mapping and Benchmarking Analysis for Korea. (IEA 4E M&B 2010, Baillargeon, 
2011) 
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Source: Catalog searches, IEA 4E M&B 2010, Baillargeon, 2011 

3.4 Deployment of Variable Speed Compressors is Increasing 

Sales of inverter driven ACs (which are more efficient at part load as discussed in chapter 2 earlier), are 

growing and have reached 100% of the market in Japan and a significant portion in the EU and Australia, 

driven by the recognition of part load energy savings in economies using seasonal energy efficiency 

metrics such as ESEER (Europe) or APF (Japan), as shown in Table 3-4. This trend is promising in terms of 

energy savings and will help reduce future energy consumption as countries adopt efficiency metrics 

that reward part-load savings, particularly where large seasonal variations in climate require that ACs run 

at part-load for a larger amount of time. 

Table 3-4 Market share of inverter driven (or variable speed compressor) split packaged ACs23 

Country 
% inverter 

(date) 
Data Type Source 

Australia 55.0% (2008) 
Government 

Data  IEA 4E M & B, 2010 

China 18.0% (2009) 
Government 

Data Baillargeon, 2011 

EU 50.0% (2008) Sales Average Baillargeon, 2011 

Japan ~100%   Baillargeon, 2011 

 

  

                                                   

 

23
 Data shown in table 3-4 are based on data summarized in the CLASP Mapping Report for China, EU, and Japan and from the 

IEA 4E Mapping and Benchmarking Analysis for Australia. (IEA 4E M&B, 2010 and Baillargeon, 2011) 
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3.5 Deployment of Reversible ACs varies with climate and habit patterns 

Sales and penetration of reversible split packaged ACs varies significantly across the various countries 

studied with near universality in the Japanese market and no reversible ACs sold in the UAE. Clearly 

climate is a major driver of the availability of reversible units in many countries, but habit patterns and 

availability of other heating sources may also be driving this trend. The reversibility of ACs also affects 

how heavily ACs are used and thereby affects the cost-effectiveness of more efficient designs, i.e. 

increased usage leads to efficiency being more cost-effective.   

Table 3-5 Market Share of reversible (or cooling and heat pump) split packaged ACs24 

Country 
% 

reversible 

Australia 77.70% 

Brazil 40.4% 

Canada 41.8% 

China - 

EU 65.0% 

India - 

Japan 98.6% 

Korea 11.1% 

Mexico 15.5% 

Russia 94.8% 

South Africa 90.3% 

UAE 0.0% 

 

                                                   

 

24 Data shown in table 3-5 are based on data from the IEA 4E Mapping and Benchmarking Analysis for Australia, from BSRIA for 
Brazil, Canada, Mexico, Russia and South Africa, and from the CLASP Mapping report for the EU and Japan. Data were 
unavailable for China and India. 
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3.6 Room AC Sales in Emerging Economies are High and Growing Rapidly 

 

Figure 3-1 Current and projected AC Sales in various countries 

Source: BSRIA, CLASP Mapping report (Baillargeon, 2011), 

As shown in figure 3-1, Room AC sales in China, India, and Brazil are already high and expected to grow 

rapidly, in the next few years as incomes rise in these economies. Therefore any market transformation 

programs with a global or regional impact must take these large markets into account, when designing 

policies and programs, since these will undoubtedly have spill-over effects, even if only the market size is 

taken into account. The Japanese market is also large with annual sales of between 7-8 million units. 

Among the countries studied, Room AC sales are dominated by 5 economies (China, India, Brazil, Japan 

and the EU), with expected total 2014 sales of about 90% of the total market in the economies studied. 

The markets in the United States and Canada are dominated mostly by central ACs rather than split 

packaged ACs, which are the dominant type of Room AC globally.  
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3.7 Ongoing Development of Alternative Refrigerants 

Currently, Room ACs along with other refrigerant using equipment use predominantly high-global 

warming potential (GWP) hydrofluorocarbon (HFC) refrigerants. In response to global HFC phase-down 

targets and proposals such as that made by the US, Canada and Mexico in 2010, the industry has begun 

developing equipment that uses low-GWP alternative refrigerants.25  

 

The ideal refrigerant has the following characteristics:  

• Non-toxic  

• Non-flammable  

• Zero Ozone Depletion Potential (ODP)  

• Near-zero GWP  

• High volumetric capacity  

 

Four types of refrigerants have been identified as possible low-GWP alternatives to the most commonly 

used refrigerants today. These include:  

 Low-GWP HFCs  

 Hydrocarbons  

 Carbon Dioxide  

 Hydrofluoroolefins (HFOs)  

 

Many of these alternative refrigerants suffer from one or more undesirable characteristics, such as 

greater flammability, toxicity, system efficiency or lower volumetric capacity than the HFC refrigerants. 

These concerns are even more relevant for Room ACs which are sensitive to all of these parameters due 

to their close proximity to the end user. Figure 3-2 illustrates the complexity of the decision-making 

process to select alternative refrigerants to HFCs, as none of the promising alternatives as yet identified 

has all the desired properties. (Rajendran, 2011) 

Due to the long lead time and multiple tradeoffs involved in alternative refrigerant selection, the US 

Department of Energy (DOE) has developed a research and development “roadmap” to work with 

industry, researchers and stakeholders in identifying and developing next generation low-GWP 

refrigerants. (NCI, 2011) 

                                                   

 

25 The United States, Canada, and Mexico announced a proposal in April 2010 to phase down consumption of HFCs by 85 
percent during the period 2014-2033. “Proposed Amendment to the Montreal Protocol.” 30 April 2010. Open-ended Working 
Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: Thirtieth Meeting. Available online 
at: http://www.epa.gov/ozone/downloads/HFCtext.pdf.    

http://www.epa.gov/ozone/downloads/HFCtext.pdf
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 Current HFCs 
Low GWP 

HFCs (R32) 
HFO Blends CO2 Hydrocarbons 

GWP 
~2000 to 
4000 675 4-650 1 <10 

Compressor 
Design &Cost Low Low Low High Low/Medium 

Energy 
Efficiency High High High/Medium Low/Medium High/Medium 

Flammability Low Low/Medium Low/Medium Low High 

Refrigerant 
Cost Low Low High Low Low 

System Cost Low Low/Medium Medium High High/Medium 

 

Figure 3-2 Current (HFC) and possible future refrigerant alternatives (Source: Author’s Interpretation 
from Rajendran, 2011)  

In addition to the development of alternative refrigerants there is also a need to develop metrics to 

evaluate the impact of such alternatives in a holistic sense, including both system efficiency and resulting 

GWP emissions (Indirect) and refrigerant leakage and the resulting GWP emissions (Direct). In response 

to this need, some researchers, such as Pham and Sachs, 2010 have suggested the use of metrics such as 

“Total Equivalent Warming Impact” (TEWI), to include such considerations in refrigerant selection, and 

have suggested that properly selected HFO blends may have lower TEWI than the currently dominant 

HFCs such as R410a. 

There is clearly a need to identify alternative refrigerants that have lower environmental impact than the 

HFCs used currently. While a more comprehensive discussion of such alternatives is beyond the scope of 

this article, there are many forums such as the Montreal Protocol-related processes where international 

stakeholders, manufacturers, environmental groups and governments are continuing this exploration 

and development. Since the choice of alternative refrigerant has an impact on efficiency and on cost, as 

well as on other parameters (flammability, toxicity) that are important in Room ACs as consumer-facing 

products it would be useful for policymakers to align efficiency programs with such processes where 

possible and practical. 
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Chapter 4. Cost Effectiveness Analysis  

In this chapter we describe the methodology, assumptions, and results of the cost of conserved 

electricity (CCE) analysis which is used to assess the cost effectiveness of efficiency improvement options 

by comparing the CCE with the cost of supplying electricity. We briefly review the process used to 

estimate the costs of efficiency improvements from the design options discussed earlier in chapter 2, the 

cost-efficiency model, input data and assumptions, and present the results of this cost effectiveness 

analysis in the form of a cost-efficiency curve for each economy studied. Figure 4-1 illustrates the steps 

in the cost effectiveness analysis.  

 

Figure 4-1 Cost Effectiveness Analysis 

We created an engineering-economic model (described in this chapter) to calculate the energy efficiency 

changes and associated manufacturing costs from the application of higher efficiency design options to 

room air conditioners. We used the model to assess the impact of increasing room air conditioner 

energy efficiency on cost of conserved electricity in the following economies: Australia, Brazil, Canada, 

China, Europe, India, Japan, Korea, Mexico, Russia, the UAE and the USA. 

Single packaged split room air conditioners dominate the global room air conditioner market and are by 

far the most commonly found room air conditioner technology in all markets except North America. As a 
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result, we focus the techno-economic analysis on these products, as they represent the major share of 

the international room air conditioner market. Majority of split systems sold are reversible i.e. that they 

can be used to provide space heating as well as space cooling. It is a small design change to convert a 

cooling only split system into a reversible unit so increasingly this is becoming the default option. In 

some economies, e.g. Japan, the energy used in heating mode by air conditioners is greater than it is in 

the cooling mode. Furthermore, the heating-mode efficiency correlates closely with the cooling-mode 

efficiency, as the design aspects affected efficiency are directly related in both cases.  Thus any 

assessment of the impact of energy efficiency design changes on cooling performance should also 

consider the impacts on heating performance if the total cost changes are to be correctly determined. 

We consider the impact of higher efficiency options on both the cooling and heating modes and present 

the combined cost changes for the product as a whole.  

While the efficiency at full load i.e. the energy efficiency ratio (EER) has been the most commonly used 

metric historically, most air conditioners only operate at full load for a small proportion of the time. The 

seasonal energy efficiency ratio (SEER) gives a better approximation of the annual average energy 

efficiency of a room air conditioner as SEER metrics are designed to account for performance during part 

load conditions occurring from time to time to produce a statistically representative metric of annual 

average energy efficiency. Currently such metrics are in place in Japan (called the Annual Performance 

Factor or APF) and the USA/Canada (known as the SEER).For this study we have chosen to use the new 

European Seasonal Energy Efficiency Ratio (ESEER), because unlike the other two metrics it also takes 

account of energy consumption in off and idle modes as well as energy used to keep crank cases warm in 

the heating system for reversible units and hence is likely to be more representative of performance of 

ACs when they are in use. Accordingly, all results in the report are reported in terms of the ESEER.  

In this report we do not attempt to produce conversions showing the ESEER levels corresponding to 

SEER, APF or EER levels; however, this is possible using the benchmarks developed in the parallel CLASP 

project (Waide et al. 2011). All units reported are metric and all EER/SEER units are reported as W/W 

values. To convert these to nominally equivalent values in American units they should be multiplied by 

3.413; however, it should be noted that the ESEER includes auxiliary energy loads while the US SEER 

does not.  

Based on a combination of design options related to the components of a conventional split room air 

conditioning unit we calculate the energy efficiency ratio (EER), the seasonal energy efficiency ratio 

(ESEER) manufacturing and total cost for each combination. 

The techno-economic analysis considers every possible combination of the design options to produce a 

“cloud” of energy efficiency/ cost pairs. At each energy efficiency level, the lowest cost option is selected 

to develop a cost versus efficiency curve.   

Each combination of design option carries a cost, generally energy efficiency comes at a premium 

meaning that the cost of the unit increases with the unit’s EER. The findings are fully consistent with 
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what is known about the options to increase energy efficiency of room air conditioners and the actual 

performance of products currently on the market; however, it should also be recognized that: 

• We only consider higher efficiency design options known to the analytical team; there may be 

other options which are not widely known 

• We assume that the current cost of implementing the higher efficiency design options does not 

evolve whereas in reality costs should decline through the “learning by doing” effect (also 

known as the experience curve) in the medium to long term, after economies of scale are 

realized, even though costs may go up in the short term 

Both of these effects are likely to be significant and their importance should not be underestimated 

when considering potential policy opportunities and implications. For example, evidence from many 

decades of equipment standards and labeling programs has shown that the incremental costs projected 

by techno-economic analyses of the type shown here are typically higher than the actual costs seen in 

the market (U.S. DOE 2011). We describe the design options considered for efficiency improvement next. 

4.1 Room AC Components and Design Options 

The energy efficiency design options applicable to improve the energy efficiency of room air conditioners 

are discussed in detail in chapter 2. For the economic cost of conserved electricity analysis we only 

consider: 

 design options that can be directly applied within standard room air conditioner technologies 

currently on the market 

 options that will show energy savings under the existing product energy performance test 

procedures 

 options that can be integrated  into current products (i.e. do not imply changing basic product 

configurations to include additional energy savings options as part of a system  redesign) 

 

Following on from the chapter 2 analysis the following room air conditioner features were considered for 

design improvements: compressor efficiency, compressor control, heat exchanger performance, 

expansion valves, crankcase heaters and controls, and standby power use26.  

                                                   

 

26 Note the benefits from design improvements in the last two sets of options would not be reflected in other test procedures 
than the new EU test procedure prEN14825 and this is why this is selected for all analyses to determine probable changes in 
annual energy use and cost.  
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These design options are then grouped into option classes from A to F as follows:  

 A = Compressor efficiency 

 B = Compressor control 

 C = Heat Exchanger 

 D = Expansion valve 

 E = Crankcase heater efficiency and Crankcase heater control 

 F = Standby 

 

Each component can be modified a finite number of times thus creating a design option; for A there are 

3 options, B also 3, C 4, D 2, E 2 and F 1 (Table 4-1).  
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Table 4-1: Design Option Description 

  Base Case 
Design Option 

1 
Design Option 2 

Design Option 
3 

Design Option 4 

A=0 to 
3 

Base case 
compressor 

Higher eff. 
compressor 1 

Higher eff. 
compressor 2 

Higher eff. 
compressor 3 

  

B=0 to 
3 

Single-speed 
compressor 
control 

AC inverter AC/DC Inverter DC inverter   

C=0 to 4 
Base case heat 
exchanger 

Higher eff. heat 
exchanger 1 

Higher eff. heat 
exchanger 2 

Higher eff. heat 
exchanger 3 

Higher eff. heat 
exchanger 4 

D=0 to 
2 

No expansion 
valve control 

Thermostatic 
expansion 
valve 

Electronic 
expansion valve 

    

E=0 to 2 

Base case 
crankcase 
heating and 
control 

Reduced 
crankcase 
heating power 

Reduced 
crankcase 
heating period 

    

F=0 to 1 
Base case 
standby loads 

Reduced 
standby loads  

      

 

Making these groupings ensures that combinations of design options are only applied when the design 

options for each component are exclusive and independent of the other options for that component. For 

example a change in compressor efficiency must not relate or affect the value in a previous option for 

compressor efficiency (all design options in group A) but the savings will interact with those from other 

design option groups (groups B to F). Thus, for each design simulation at least one value from each of 

group A, B, C, D, E and F must be chosen and simulated. Overall this leads to 1,728 combinations of 

design options and hence and equal number of pairs of manufacturing cost vs. ESEER values. These 

results were produced and plotted to form a “cloud” of data points as shown in figure 4-1 below and 

post processed using specially designed software code to determine the least cost choice at each energy 

efficiency level. Both sets of results are reported in section 4.4. 



 

 

64 

 

Figure 4-2 “Cloud” of 1728 Cost-ESEER pairs 

4.2 Cost-Efficiency Model Methodology 

The model applied to simulate the impact of each energy efficiency design option is the same one used 

for the EU’s Ecodesign Lot 10 study and is an adapted version of the Oak Ridge National Laboratory 

model that has previously been applied to similar analyses in the USA for the USDOE.  

The analysis makes use of the energy efficiency incremental component costs and efficiency 

improvements developed under the European Commission’s Ecodesign program Lot 10 study. This 

analysis was recently completed and has the latest cost component data. Base case and incremental 

component cost data used in the Lot 10 study was derived from extensive engagement with 

manufacturers and other industrial experts.  

We have used the same base case model developed for the EU Lot 10 study, which is a fixed speed 

compressor unit with the following characteristics.  
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Table 4-1: Base Case Model Performance Characteristics 

FULL LOAD (T1) Value Units Description 

Pcfl 35 3.5 kW Pcfl = cooling capacity power at full load 

Pefl 35 1.21 kW Pefl = electric power load at full load 

EERfl 35 2.89 W/W EERfl = energy efficiency ratio at full load 

PART LOAD 

  

 

Min capacity 100% 

 

 

Min cap EER 100% 

 

 

Cd 0.2 

 

Cd = the part load degradation coefficient 

Pto 0.036 kW Pto = power demand with thermostat off 

OFF LOAD 

  

 

Power 

  

 

Pto 0.17 kW Pto = power demand with thermostat off 

Psb 0.006 kW Psb = standby power demand 

Poff 0.006 kW Poff = off-mode power demand 

Pck 0.03 kW Pck = crank case heater power demand 

Hours 

  

 

Hto 221 H Hto = hours spent with thermostat on 

Hsb 2142 H Hsb = hours spent in standby mode 

Hoff 0 H Hoff= hours spent in fully off mode 

Hck 2672 H Hck = hours spent with crankcase heater on 

 

This unit is very typical of fixed speed split systems found around the world but is not the least efficient 

kind of product one can find on the market and is close the market average efficiency seen in most 

market. Thus it should be understood that the analysis starts from a mid-market point for much of the 

world Room AC market. 

Once the base case is simulated, successive design changes are simulated such that all possible mutually 

inclusive options have been simulated leading to 1728 simulations per economy. 

The efficiency gains associated with these options depend on the seasonal load characteristics assumed 

and hence depend on the climate and usage factors. These are treated for each economy using known 

data sources on total hours of usage (in both heating and cooling models) and climate. The percentage 

annual energy savings compared to the base case from applying each of the design options individually 

in Europe is shown in Table 4-4. Please note that Table 4-4 applies to the climate in the European Union 

only. 
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Table 4-2: Energy Savings for Individual Design Options Compared to the Base Case Model Used in the 
European Union 

Design option 
Energy saving 

compared to the 
base case 

A1 6.5% 

A2 12.3% 

A3 18.7% 

B1 20.0% 

B2 20.7% 

B3 24.8% 

C1 9.1% 

C2 16.0% 

C3 21.3% 

C4 24.8% 

C5 28.6% 

D1 5.0% 

D2 8.8% 

E1 9.8% 

E2 10.7% 

F1 2.2% 
 

To produce the cost estimates, we consider the following costs and mark-ups 

 The factory gate cost of the appliance 

 The supply chain mark-ups from factory gate to final customer 

 The costs of installation 

 Maintenance costs 

 Energy costs 

 Costs of capital 

 

The factory gate costs are determined by applying a bill of materials for each component used, general 

production and labor overheads, sales and general administration costs and producer mark-ups. Supply 

chain mark-ups are determined from the literature and/or by comparing retail prices with estimated 

factory-gate prices (this is done by screening on-line catalogue price comparisons as a function of 

product efficiency). 

Installation costs are taken from the literature or expert contacts. Energy costs are derived from official 

statistics on tariffs and capital costs are determined by assuming a real discount rate 2% higher than the 
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inflation adjusted prime interest rate in each economy. 

In order to calculate the cost of a component of a split air conditioner, the whole unit is first divided into 

its components: 

 Compressor 

 Condenser 

 Evaporator 

 Outdoor fan 

 Indoor fan 

 Working fluid 

 Expansion valve 

 Refrigerant line 

 Liquid receiver 

 Controller + electricity 

 Casing 

 Others (Packaging, accessories, manual) 

 

Next the component is given a percentage value which denotes how much of the total cost of the air 

conditioner it represents, for example the compressor represents 26% of the total cost. Then by using 

the known cost of a typical room air conditioner each component is given a cost based on its percentage 

share. As each higher efficiency design option is applied it is assumed to have an incremental cost 

associated with it. These costs are taken from the analysis used in the EU Lot 10 study. The part of these 

incremental costs attributable to labor costs will vary by region and thus these are allowed to vary from 

one economy to the next. We estimate the CCE based on the following steps as shown in Figure 4-1 

earlier: 

 Manufacturing cost 

 Installed cost 

 Cost of Conserved Electricity 

The manufacturing cost is calculated by taking the known manufacturer cost and adding the combination 

of prices attached to each design option. As seen in the example presented in Figure 4-3 below, 

improving the efficiency of room ACs adds to their manufacturing costs which results in a corresponding 

increase in their retail price. For example, a 32% improvement in ESEER from 4.06 to 5.36 increases the 

manufacturing cost by $ 106 and the retail price by $ 182. (~32% increase). The manufacturing costs of 

room ACs for various economies are presented in Appendix B. 
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Figure 4-3 Example of Manufacturing Cost versus ESEER Curve for Australia 

The installed cost is made up of; manufacturing costs, the manufacturers selling price, installer margin 

and tax. In the model these are represented using a set of multipliers which represent the mark up from 

the original manufacturer’s cost. 

The cost of conserved electricity is calculated using the installed cost, the discount rate, the life duration 

of the product, the energy tariff and the maintenance cost for the base case model and for each 

efficiency improvement level as discussed further in section 4.2.1. 

4.3 Other Data Inputs 

Electricity price data is collected from: 

 US Energy Information Administration (EIA) 

 EU Energy Portal 

 The International Energy Agency (IEA) Electricity Information 2010 

 The IEA Key World Statistics 2010 

 Government of India, Ministry of Power, Central Electricity Authority (www.cea.nic.in) 

 LBNL data for China and India 

 

The statistics are gathered and converted into USD and Euro for comparison work. The rates used in the 

analysis are a country specific blend of domestic and commercial rates from 2009. The weighting is 

calculated based on the BSRIA table showing percentage sales of single and multi-split air conditioners to 

the residential market. Where this data could not be assumed a weighting of two thirds residential to 

http://www.cea.nic.in/
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one third commercial has been assumed. The 2009 commercial rate is calculated using a blend of 2009 

domestic (2/3) and industrial rates (1/3). 

 
Table 4-3: Electricity Prices including Weighting ($ per Kilowatt hour) 

  
Residential 

Rate 
Commercial 

Rate 
Blended 

Rate 

Weighting 
(Residential 

to 
Commercial) 

Australia $0.11 $0.07 $0.08 60:40 

Brazil $0.14 $0.13 $0.14 60:40 

Canada $0.06 $0.06 $0.06 78:22 

China $0.06 $0.09 $0.07 66:33 

EU-27 $0.15 $0.13 $0.14 66:33 

India $0.03 $0.06 $0.05 50:50 

Japan $0.16 $0.15 $0.16 66:33 

South Korea $0.06 $0.05 $0.05 85:15 

Mexico $0.06 $0.06 $0.06 80:20 

Russia $0.04 $0.05 $0.05 42:58 

South Africa $0.06 $0.05 $0.05 83:17 

United States $0.08 $0.07 $0.08 66:33 

United Arab Emirates $0.05 $0.05 $0.05 75:25 

 

Labor statistics are collected from: 

 The Office of the Economic Advisor, Ministry of Commerce and Industry 

 China Statistical Yearbook 

 International Labor Office (ILO) Department of Statistics, ILO Database 

 Organization of Economy Co-operation and Development (OECD) 

 Bureau of Labor Statistics (BLS) 

We selected data from the ‘manufacturing’ labor category for the model. Figures are given in terms of: 

earnings per hour, per month and per employee. Data timelines ranged from 2000 to 2009. Accurate and 

current labor data was challenging to source, particularly for Russia, South Africa and the UAE. As such, it 

was difficult to complete accurate comparison work without using a forecasting tool on the data we 

could find in those countries. 

AC usage data is gathered from national sources for each economy where available.  
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4.4 Cost Effectiveness Analysis using the Cost of Conserved Electricity  

The cost-effectiveness metric used in the analysis presented here is the cost of conserved electricity 

(CCE), which is calculated by dividing the incremental cost of a design change by the incremental energy 

saved by the design change. The design change is considered with respect to a design corresponding to 

the market average efficiency level in each economy. We calculated two types of CCE and discuss the 

calculation method, market transformation program design using the cost-effectiveness analysis and the 

results of the cost effectiveness analysis next. We discuss briefly the impact of technological learning on 

cost-effectiveness of efficiency improvements in section 4.2.4, and present a sensitivity analysis of our 

results to the assumptions in Appendix D. 

4.4.1 Cost of Conserved Electricity Methodology 

Two kinds of costs of conserved electricity are calculated as follows: a) the manufacturing cost of 

conserved electricity, (CCEm), which considers the incremental cost of the higher efficiency model at the 

factory gate i.e. to the manufacturer and b) the cost to the end user or consumer of conserved electricity, 

(CCEc), which considers the incremental cost of the higher efficiency model to the consumer or end user, 

i.e. considering retail prices. The former metric (CCEm) is lower than the latter (CCEc) as it does not include 

markups and installation costs. Therefore, CCEm can be used to measure the cost-effectiveness of a 

market transformation program such as an upstream incentive program, while CCEc would be used to 

measure the cost effectiveness of a standards program. 

The Cost of Conserved Electricity of CCE is then calculated for each economy at various efficiency levels as 

follows: 

CCE= Annualized incremental cost of efficient AC ($) /Annual power saved by efficient AC (kWh) 

i.e.  CCEm = Annualized Incremental manufacturing cost of efficient AC ($)/ [(Annual electricity 

consumed by average AC) - (Annual electricity consumed by efficient AC)] (kWh) 

and  CCEc = Annualized Incremental cost to consumer of efficient AC ($)/ [(Annual electricity 

consumed by average AC) - (Annual electricity consumed by efficient AC)] (kWh) 

4.4.2 Using Cost of Conserved Electricity for Market Transformation Program 

Design 

Governments could use data such as the cost of conserved electricity results presented here in sections 

4-4 and 5-3 below to design programs such as standards programs at efficiency levels corresponding to 

the point where costs of conserved electricity are equal to the benefit of saving electricity from the 

perspectives of various stakeholders. We will discuss these perspectives and their corresponding cost-

effective potential next. 

In order to assess whether these extra manufacturing costs and corresponding increases in retail prices 
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for saving electricity are cost effective, we compare them with the benefits of saving electricity, i.e. 

typically the cost of electricity used by the consumer.  The cost and benefit of saving electricity varies 

with the stakeholder (consumer, utility, electricity sector, and society at large). For example, the cost to 

the consumer is the increase in the AC retail price whereas the benefit is the savings in the electricity bill 

which depends on their electricity tariff.  

In this analysis the cost effectiveness of efficiency improvement options and the corresponding savings 

potential is assessed by comparing the cost of conserved electricity (CCE) for these options with the cost 

of electricity. For most purposes, CCEc, which uses retail prices, is the cost-effectiveness metric that is 

used. We estimate the CCE at different levels of efficiency improvement corresponding to the classic 

options discussed in section 2.3.1 and further discussed in section 4.1 and 4.2 earlier. These design 

options and their corresponding costs and efficiency benefits are assessed up to the technical potential, 

i.e. the level of efficiency achievable using the best available technology that is currently feasible. 

The percentage efficiency improvements and corresponding energy saving potential that is cost effective 

is estimated by comparing the CCE with cost of electricity suitable for the perspective for which the cost 

effective potential is estimated. Efficiency improvement policies and programs often attempt to correct 

market failures in facilitating the adoption of cost effective energy saving potential. The information 

presented in sections 4-4 and 5-3 can be used to inform the design of these programs. 

 

Figure 4-4 Market Transformation Program Design Example 

Cost Effectiveness- Consumer Perspective: 

The cost effective efficiency level and corresponding savings potential from the consumer perspective 
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can be estimated by using the consumer tariffs as the cost of electricity. For example, as shown in Figure 

4-4, for setting minimum standards, CCEc can be compared with the consumer electricity tariff. A 

standards program looking at cost effectiveness from a perspective focused on cost-effectiveness to the 

consumer can use the metric of consumer electricity tariff ≥ CCEc to determine the level of efficiency 

improvement and corresponding savings that are cost effective to the consumer. 

Cost Effectiveness – Utility Perspective: 

The cost effective efficiency level and corresponding savings potential from the perspective of a utility 

can be estimated by using the long run marginal cost (LRMC) of electricity supply at the time when ACs 

are operating (which is often during peak electricity demand periods), as the cost of electricity. For 

example, as shown in Figure 4-4,  the efficiency level that can be targeted by a utility incentive program, 

could be at a where CCE is less than or equal to the long run marginal cost of electricity supply i.e. LMRC 

≥ CCEc.  

Further, if the incentive is provided upstream, even higher levels may be targeted as the mark-ups and 

taxes may be avoided compared to a downstream incentive if such benefits are passed through the 

supply chain to the consumer. In such cases, the CCE can be estimated based on incremental 

manufacturing costs and the efficiency improvements targeted is where LMRC peak ≥ CCEm. The actual 

amount of the incentive could be set at the incremental cost to the manufacturer or some fraction of 

this cost. Such costs could be calculated for each economy using the manufacturing cost data presented 

in Appendix B. 

Cost Effectiveness – Societal Perspective: 

The cost effective efficiency level and corresponding savings potential from a societal perspective can be 

determined by including costs such as the costs of peak load, power outages, and backup generation as 

well as the environmental cost of electricity generation to the cost of the LRMC peak to determine the 

cost of electricity supply to society as a whole. From this perspective, even higher efficiency levels could 

be targeted to avoid imposing these costs on society. If cost effectiveness is considered from this 

perspective, Cost of Electricity Supply to Society= CCEm. This is the widest, most inclusive, definition of 

cost effectiveness, and could be targeted by programs promoting the “top of the market” such as 

categorical labels, awards, procurement and incentive programs. 

Integrated market transformation programs that target different levels of the market can be designed 

using the information presented here. The total CCE versus efficiency curves presented in the next 

section offer flexibility in designing integrated programs that can target different potentials depending 

on the perspective of the policymaker.  
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4.4.3 Cost Effectiveness Analysis Results 

 

Figure 4-5 Cost (to consumer) of Conserved Electricity (CCEc) Versus Room AC Efficiency for Various 
Economies 

As shown above in figure 4-5, for most economies ESEERs of over 6 W/W are attainable at costs (to the 

consumer) of conserved electricity between 5 and 15 cents per kWh. In economies with a higher cost of 

capital(i.e. discount/interest rates) such as Brazil, or low hours of use such as Mexico or China, higher 

efficiency ACs carry a larger cost of conserved electricity, when compared to India or UAE. For countries 

such as Japan where ACs are used for both heating and cooling, and India or UAE, where ACs are used 

for many hours annually, very high ESEERs are attainable at low cost per unit of electricity saved. 
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Figure 4-6 Cost (to manufacturer) of Conserved Electricity (CCEm) Versus Room AC Efficiency for 
Various Economies 

Figure 4-6 shows the cost (to the manufacturer) of conserved electricity versus efficiency, where the 

markups and incremental costs of installation and maintenance which are also incurred by the consumer 

are not included. Thus CCEc is usually higher for the same efficiency level compared to CCEm. Therefore 

the efficiency levels reached using this metric are correspondingly higher at the same cost. We discussed 

the use of these cost-effectiveness metrics for energy efficiency program design in the previous section. 

4.4.4 Price Learning  

The economic analyses presented in this chapter do not consider any form of price or efficiency learning, 

in order to be conservative in terms of cost-effectiveness. However, for the sake of comprehensiveness, 

we discuss briefly the recent literature on price learning of air conditioners. 

The experience curve is an empirical model based on historical data fits of price and/or cost data to 

cumulative production. This model has been applied to a wide range of products (DOE 2011). Although 

“experience curves” and “learning curves” have identical mathematical forms, they represent different 

perspectives that are relevant to studies of different scope. According to (DOE 2011), learning curves are 

generally used when the study focuses on worker and management “learning” that reduces labor hours 
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for a single standardized product from a single manufacturer. Experience curves usually focus on broader 

classes of products, e.g., all refrigerators, which may encompass many models built by many 

manufacturers. Because of the range of Room AC models considered, we focus on learning rates from 

“experience curves” for Room ACs here. 

Learning Rates for ACs 
Weiss et al (2010) conducted a review of the literature on learning rates derived from experience curves 

for various energy demand side technologies and found that six studies conducted historically on 

learning rates in air conditioners reported an average learning rate of over 15%, with the range being 

just over 8% up to 22%. i.e. the price of air conditioners dropped on average by 15% with every doubling 

of air conditioner production, based primarily on shipment data in the US market, with one study on the 

Japanese market. While it is difficult to generalize these results to the global market, it is evident from 

the literature that increased production does significantly reduce the prices of air conditioners. i.e. in 

this case Room ACs. Thus policies designed to promote more efficient Room ACs, if successful will 

probably see a corresponding drop in the prices of such air conditioning technology. 
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Chapter 5. Energy Saving Potential 

Room ACs efficiency improvements account for 5-7% of total cost effective energy savings from possible 

cost-effective appliance efficiency improvement programs considered in a recent LBNL study (Letschert 

et al, 2012). In this chapter we describe our data sources, methodology and estimates of energy savings 

potential from higher efficiency of Room ACs for the various economies. We also discuss the energy 

savings potential of cost-effective market transformation programs in each economy. We will discuss 

briefly the impact of the rebound effect on energy savings in appendix C, and a sensitivity analysis of the 

energy savings to our assumptions in Appendix D. 

5.1 Savings Potential Methodology and Data Sources 

Room AC shipment data and forecast from BSRIA, the CLASP Mapping Report (Baillargeon, 2011), the EU 

Ecodesign data were used for the economies studied. To estimate future savings sales have to be 

forecast. We used the sales forecast from LBNL’s BUENAS model (McNeil et al. (2013) in order to 

determine the growth rate of sales after 2014. Table 5-1 summarizes the Room AC shipment/sales data 

inputs.  

Table 5-1 Room AC Sales by country 

Country Sales in 2009 (Millions) Sales in 2014 (Millions) 

Australia 0.9 1 

Brazil 1.6 7.2 

Canada 0.05 0.1 

China 34 41.7 

EU 15.8 19.3 

India 1.7 6.1 

Japan 6.8 7.2 

Korea 1.6 1.7 

Mexico 0.3 0.4 

Russia 0.9 2.4 

US 0.11 0.13 

Source: McNeil et al. (2013), Letschert, (2009), BSRIA 

 

In order to estimate savings we assumed a “base case” from the market data presented in chapter 3 
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using the average EER converted to average ESEER and average capacity reported in each market. 

Assuming any market transformation policy or program targeting more efficient Room ACs begins in 

2012, we estimated annual energy savings potential from more efficient Room ACs in each economy in 

2020. All energy and emissions savings are calculated with respect to the “base case” in the 

corresponding market.  

5.2 Energy Savings Potential 

The energy savings potential of more efficient ACs at various efficiency levels is presented in Figure 5-1 

below. The energy savings potential is highest in countries with a large market such as China, India and 

the EU, and least expensive in countries with the highest annual use, such as India and the UAE. 

Countries with smaller split-packaged AC markets such as the United States, and Canada have the 

smallest savings potential. All the economies other than the United States and Canada have significant 

energy savings potential from Room ACs at low cost of conserved electricity, with China saving annual 

energy of about 33 Rosenfelds.27 China, India, the EU, and Japan all have very significant energy savings 

potential from Room AC market transformation programs. 

                                                   

 

27
 In line with Koomey et al. 2010, we use the unit of Rosenfeld for denoting energy savings. One Rosenfeld=3Twh/year, or 

approximately one 500MW (i.e. medium-sized power plant). 
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Figure 5-1 Cost of Conserved Electricity versus Annual Energy Savings in 2020.  
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5.3 Cost Effective and Total Energy Savings Potential 

A B C D E F G H 

Country 
Tarriff 
$/kW

h 

Market 
Averag

e 
ESEER 

Economic 
Potential 

ESEER 
(W/W) @ 

Tariff = CCEc 

Technical 
Potential 

Max ESEER 
(W/W) 

2020 Energy 
Savings @ 
Economic 
Potential 

(Rosenfelds) 

2020 Energy 
Savings @ 
Technical 
Potential 

(Rosenfelds) 

2020 CO2 
savings @ 
Technical 
Potential 

(tons/year) 

Australia 0.10 4.03 4.48 8.55 0.35 2 4 

Brazil 0.19 4.05 5.67 8.83 6 10 3 

Canada 0.08 4.58 4.54 8.26 0 0.24 0.1 

China 0.19 4.11 5.19 7.30 16 33 99 

EU 0.19 4.09 5.00 8.33 11 30 32 

India 0.08 3.56 5.55 7.91 19 29 78 

Japan 0.22 5.21 7.44 7.85 8 9 11 

Korea 0.07 4.80 5.33 8.45 1 4 5 

Mexico 0.08 3.71 4.45 9.74 0.15 1 1 

Russia 0.05 4.20 4.20 10.23 0 4 4 

UAE 0.07 3.46 6.24 7.64 2 2 3 

USA 0.11 3.87 6.80 8.00 0.2 0.24 0.4 

Total         64 123 241 

Table 5-2 ESEER and Energy Savings at Economic and Technical Potential 

In the above table 5-2, we present the following information: 

 Column B: representative consumer tariffs for the economies studied.  

 Column C: the approximate market average ESEER converted from the EER values reported in 

chapter 3.  

 Column D: the economic or cost effective potential in terms of ESEER i.e. at efficiency levels 

where cost of conserved electricity equals the tariffs in column B.  

 Column E: the total or technical potential in ESEER terms, i.e. the ESEER possible by deploying 

the best available technology in the climate and seasonal conditions of the respective 

economies. 

 Column F: the 2020 annual energy savings potential from Room AC efficiency improvement in 

Rosenfelds (3TWh/yr), assuming that the corresponding market transformation program goes 

into effect at the efficiency level corresponding to column D and transforms 100% of the market. 

i.e. a standard corresponding to column D. 
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 Column G: the 2020 annual energy savings potential from Room AC efficiency improvement in 

Rosenfelds (3TWh/yr), assuming that the corresponding market transformation program goes 

into effect at the level corresponding to column E and transforms 100% of the market. i.e. the 

potential available for a labeling or incentive specification corresponding to column E.  

 Column H: the 2020 annual CO2 savings potential from Room AC efficiency improvement 

assuming that the corresponding market transformation program goes into effect at the level 

corresponding to column E and transforms 100% of the market. i.e. the potential available for a 

labeling or incentive specification corresponding to column E. 

The total 2020 energy savings potential from standards that is cost effective from a consumer 

perspective is about 64 Rosenfelds, i.e. Equivalent to 64 medium sized power plants(or 192 TWh/year), 

while the total technical potential is about 123 Rosenfelds, i.e. about 123 medium sized power plants (or 

369 TWh/year). 

If the costs of peak power, backup generation or power outages are included in the consideration of 

cost-effectiveness, due to the high peak coincidence of Room AC use, the ESEER levels that would be 

considered to be cost effective would be even higher than those shown in column D, along with 

correspondingly higher savings.  
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Chapter 6. Conclusions 

Based on the analysis presented in this report and discussed above, Room AC energy efficiency 

improvement offers significant opportunity for cost-effective energy efficiency improvement over 64 

medium sized power plants (i.e. 192 TWh/year). We summarize conclusions that are relevant for 

policymakers to design effective Room AC energy efficiency market transformation programs below, as 

follows:  

Technical Data Can Be Used for Integrated Market Transformation Program Design 

Governments could use data such as the cost of conserved electricity results presented earlier in 

sections 4-4 and 5-3, and the manufacturing costs presented in Appendix B to design programs such as 

standards, labeling or incentive programs at efficiency levels corresponding to the point where costs of 

conserved electricity are equal to the benefit of saving electricity from the perspectives of various 

stakeholders. The total CCE versus efficiency curves presented in the next section offer flexibility in 

designing integrated programs that can target different potentials depending on the perspective of the 

policymaker. 

Cost-effectiveness Metrics Could be Expanded 

Metrics of cost effectiveness that drive energy efficiency policymaking could be expanded beyond a 

narrowly construed consumer cost-effectiveness perspective. For example, such metrics could account 

for subsidies, the cost of peak power, the costs of backup generation, or the costs of power outages. The 

cost effectiveness data presented in chapter 4 of this report could be used to design programs with such 

expanded considerations of cost-effectiveness, and therefore correspondingly higher efficiency levels. 

While expanded metrics could also be used across multiple product categories, such expanded metrics 

are particularly relevant for AC use due to the high contribution of ACs to peak loads, power outages and 

backup generation. 

Low GWP/ODP Refrigerants Can Have a Cost and Efficiency Impact 

Through the Montreal Protocol and related processes, the Room AC industry is developing lower GWP 

refrigerants to phase out high GWP, HFC-based refrigerants. This next generation refrigerant 

development process has many tradeoffs as discussed in section 3.7, including tradeoffs with cost and 

energy efficiency, thus all three issues (cost, efficiency, and low ODP/GWP) need to be addressed in an 

integrated fashion. 
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Appendix A: Climate Specific Efficiency Improvement Options 

In this appendix we present and discuss Room AC technologies and efficiency improvement options that 

are climate-specific and could further improve efficiency beyond the levels discussed in chapters 3 and 4. 

Evaporative Cooling 

Evaporative air conditioning or EAC technologies are becoming increasingly popular in residential as well 

as commercial applications in countries with hot, dry climates. 

EAC systems use water as the coolant as opposed to chemical refrigerants. EAC can provide superior 

ventilation and cooling over the traditional vapor compression air conditioning (VAC). However, unlike 

VAC systems which are capable of operating under a wide variety of climatic settings, EAC varies in 

effectiveness and efficiency with the relative humidity of the outside air. EACs have the added benefits 

that they reduce the requirement for traditional fluid refrigerants, avert CO2 emissions and reduce the 

peak electricity demand.  

The Optimal operation for EACs is in hot, dry climates although they are applicable in more humid 

climates. EACs are widely used in the South Western US, Middle East, Australia, the Indian subcontinent, 

Eastern Africa and northern Mexico29. 

Evaporative coolers can use up to 75% less electricity than conventional air conditioning which can 

equate to $150 a year savings on electricity bills, this invariably depends on the climate of the building, 

for hotter desert like climates savings could be even higher (source:30) These systems do not use CFCs or 

any other ozone harming compounds and cost less to operate than conventional air conditioners 

including the initial cost of the unit and the installation costs. Another benefit of evaporative coolers is 

that they do not re-circulate ‘old’ air like other systems, rather they facilitate a complete air change every 

1-3 minutes (source:31). 

Drawbacks to the system include the high consumption of water, between 3.5 and 10.5 gallons per hour 

of operationError! Bookmark not defined.; regular maintenance, units are often noisy; units can drip 

water and leak; less energy efficient than high efficiency AC systems; and the units are less effective in 

                                                   

 

29 http://www.coolmax.com.au/evaporative-cooling/evaporative-cooling-areas.htm accessed 05/04/2011 
30

 http://www.consumerenergycenter.org/home/heating_cooling/evaporative.html accessed 04/04/2011 
31 http://www.toolbase.org/Technology-Inventory/HVAC/evaporative-coolers accessed 05/04/2011 

http://www.coolmax.com.au/evaporative-cooling/evaporative-cooling-areas.htm
http://www.consumerenergycenter.org/home/heating_cooling/evaporative.html
http://www.toolbase.org/Technology-Inventory/HVAC/evaporative-coolers
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high humidity climates and should only really be used in hot dry climates32. 

The Table A-1 below shows the performance of a typical evaporative cooler on room air conditioner 

according to humidity and outside temperature.  The optimum room temperature is around 68-72 

degrees Fahrenheit, but depends on the country and personal preference. In order to achieve this 

temperature conditions must be right. High temperatures can have a serious impact on the effectiveness 

of the unit, over 100 degrees Fahrenheit and humidity levels must be very low, 2-10% for the unit to 

work effectively, the same can be stated for very high humidity levels which must be coupled with low 

temperatures in order to provide optimum conditions for the unit. 

Table A-1 Cooling Performance of Evaporative Cooler on Room Air Temperature  

O
u

td
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ir

 T
em

p
er

at
u

re
 

% Relative Humidity 

 2 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

75 54 55 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 

80 57 58 60 62 63 64 66 67 68 69 71 72 73 74 76 76 77 

85 61 62 63 65 67 68 70 71 72 73 74 75 76 77 79 81 
 

90 64 65 67 69 70 72 74 76 77 78 79 81 82 83 84 86 

95 67 68 70 72 74 76 78 79 81 82 84 85 87  

100 69 71 73 76 78 80 82 83 85 87 88  

105 72 74 77 79 81 84 86 88 89  

110 75 77 80 83 85 87 90 92  

115 78 80 83 86 89 91 94  

120 81 83 86 90 93 95  

125 83 86 90 93 96  

Source: Ed Phillips, Arizona Almanac 

Direct residential air conditioners  

A residential EAC system normally comprises a sheet metal or plastic box which contains large vertical 

filter pads; a fan connected to an electric motor; a water pump; and an associated water distribution 

system. A schematic representation of the arrangement of this configuration is illustrated in Figure A-1.  

 

                                                   

 

32
 http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-

homes-1001.html accessed 05/04/2011 

http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-homes-1001.html
http://www.azcentral.com/business/articles/2010/10/10/20101010biz-evaporative-coolers-disappearing-from-Phoenix-area-homes-1001.html
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Figure A-1: Typical direct evaporative air conditioner 

Source: World Bank, 1999 

As illustrated in the diagram, the fan draws in the warm air from outside the building through the wetted 

pad area, thus cooling the air. The role of the water pump is to draw water from the sump and deposit it 

through the distribution system onto the top of the pads. This simple low cost solution of direct EAC is 

suitable for indoor comfort cooling once the ambient wet-bulb temperatures reach 21°C (69.8°F). Direct 

EAC systems operating in regions of low humidity are capable of yielding energy savings in the range of 

60-80% over VAC systems (World Bank, 1999).  

Indirect evaporative air conditioning 

The indirect-direct EAC was developed over the past 25 years and has grown in popularity due to its 

ability to provide improved cooling and operating conditions over the direct EAC method. In essence an 

additional step is introduced into the cooling process making it a two stage process. 

The first stage seeks to cool the air without the addition of moisture to the air and the second stage adds 

the moisture. Typically, the air expelled by the Indirect EAC unit is 3.5°C (6.30°F) cooler than the simple 

direct EAC system. This expands the applicability of the EAC to climates with higher wet-bulb 

temperatures. Indirect-direct EAC systems are thought to yield between 40-50% energy savings in 

moderate humidity climates over traditional VAC systems (World Bank, 1999). A diagrammatic 

representation of the indirect-direct EAC process is presented in Figure A-2.  
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Figure A-2: Indirect-direct evaporative air-conditioning process 

Source: SST, 2011 

Desiccant-assisted evaporative air-conditioning 

There have also been significant developments to adapt the EAC technology to even the most humid of 

regions by using dehumidifying chemicals such as desiccants (e.g. silica gel). The desiccant is employed 

by dehumidifying the ventilation air to a set-point followed by passing the resulting air through either a 

direct or indirect EAC system which then cools the ensuing air to the desired temperature. The air cycle 

for the desiccant cooling system is illustrated in Figure A-3 below. 

 

Figure A-3: Air cycle for the desiccant cooling system 

Source: World Bank, 1999 
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Desiccant-Enhanced Evaporative Air Conditioning (DEVap) (NREL, 2011) 

The National Renewable Energy Laboratory (NREL) has recently developed a novel concept of combining 

the benefits of using liquid desiccants and the evaporative cooling technologies. This has enabled the 

scope of the stand-alone indirect evaporative coolers to extend their geographical applicability beyond 

the arid or semiarid regions. Earlier attempts to combine liquid desiccant cooling with indirect 

evaporative cooling resulted in oversized, overcomplicated equipment, whereas NREL’s DEVap combines 

evaporative and desiccant cooling into one single cooling core unit.   

DEVap’s central advantage is gained by the intimate thermal contact between the cooling heat sink and 

dehumidification, which results in more potent dehumidification potential. This results in unique 

optimization benefits which include using cheaper desiccant materials as well as a more compact cooling 

core. DEVap uses membrane technology to contain the liquid desiccant and water. When used to contain 

liquid desiccant, it eliminates desiccant entrainment into the air-stream. When used to contain water, it 

eliminates wet surfaces, prevents bacterial growth and mineral build-up, and avoids any cooling 

degradation of the core. Error! Reference source not found. below illustrates (a) the physical DEVap 

concept; (b) high-level illustration of the DEVap air conditioning unit. 

 

 

Figure A-4: (a) Physical DEVap concept; (b) Illustration of DEVap air conditioning unit 

Source: NREL, 2011 
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DEVap’s thermodynamic potential prevails over some of the shortfalls which face standard refrigeration-

based direct expansion cooling. In essence, DEVap decouples cooling and dehumidification performance 

resulting in independent control of temperature and humidity. 

Modeling conducted by NREL has demonstrated that the yearly combined source energy for the thermal 

and electrical energy required to operate DEVap is anticipated to be 30%–90% less than state-of-the-art 

direct expansion cooling (naturally dependent on whether it is applied in a humid or a dry climate). 

Moreover, NREL indicates that desiccant technology is a new science with unpracticed technology 

improvements that can reduce energy consumption by an additional 50% (NREL, 2011). 

Solar evaporative air-cooling 

Given that EACs require a relatively low energy requirement combined with the fact that strong sunlight 

often coincides with the requirement for cooling, there is a natural marriage between EAC systems and 

solar PV systems. Naturally there is an optimization of the EAC system components to maximize the 

efficiency of the system to enable it to function on solar power. Moreover, it is important to note that 

most of the investment cost would go into buying the solar panels. A simple diagram of the solar 

powered EAC system is provided in Figure A-5. 

 

Figure A-5: Solar powered evaporative air conditioner 

Source: World Bank, 1999 

Phase Change Materials 

Thermal energy storage is a relatively new technological area with applicability to a wide range of 

thermal and cooling applications. Phase change materials or PCM, are materials which can store and 

release thermal energy during the processes of melting and freezing. Such materials can release large 

quantities of energy during freezing in the form of latent heat but absorb equal amounts of energy from 

the surrounding environment upon melting.  PCMs have several added benefits over traditional thermal 
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energy storage systems in which they potentially have less weight and volume, can absorb and release 

heat/cooling at suitable and pre-determined temperatures and in well designed air conditioning systems 

shift peak heating and cooling loads to off peak hours (ATE, 2001). PCM materials are already actively 

used to support air conditioners, free cooling, passive cooling, solar heating, transport packaging and 

heat recovery.  

PCM are being developed in several forms most commonly now in enclosure-based systems to 

supplement more conventional cooling/heating systems typically in the form of air conditioners. 

PCMs are selected such that they are solid at room temperature. When the temperature increases, the 

PCMs change state, from solid to liquid and absorb a large amount of energy from the surrounding 

atmosphere in the form of latent heat; this therefore has a cooling effect on the room. Equally, when the 

temperature begins to fall, the material will undergo another change of state and solidify thus giving off 

the excess energy in the form of heat which in turn warms the house. The integration of PCMs within the 

building envelope ensures that the PCM absorbs the higher exterior temperature during the day, and 

dissipates the heat to the interior at night when it is cooler and often required.  

A number of properties which are desirable for PCMs which are to be used in a residential environment 

include but are not limited to: a melting temperature above 25°C (77°F); low material cost; non toxic, 

corrosive, or hydroscopic; and available in plentiful quantities for inclusion into building materials (NAHB, 

2011). 

There are a variety of different methods to incorporate PCMs into building materials and HVAC systems 

in order to achieve energy savings. These methods include: incorporation in roofs; walls; floor boards; 

surrounding of piping; wall boards; and PCM encapsulated in storage tanks (Parameshwaran et al., 

2010).  

Figure A-6 below provides a simple illustration of one of the methods used to integrate PCMs in 

conjunction with a conventional air conditioner system and a standard air/water heat exchanger.  
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Figure A-6: PCM storage tank integrated with an air conditioner unit and air/water heat exchanger 

Source: HETAC, 2011 

A number of different studies have used simulation and experimentation to quantify the benefits of 

using PCMs of which a selection is summarized in the table below: 
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Table A-1: Summary of main outcomes from PCM Simulations & Experimentation 

PCM used Integration 
of PCM 

Study objective Key results Evaluative 
Technique 

Reference 

A mixture of 
commercial 
Glycol wax 

Integrated 
into roof 
and 
building 
walls 

Evaluation of the 
effects of retrofitting 
on a building in Brazil 

Saving 19% 
and 31% of 
energy for 
cases using 
window and 
central a/c 
units 

Simulation and 
experimentation 

Ismail et 
al., 1997 

Highly 
crystalline 
paraffin-
based PCM 

PCM frame 
walls 

Full instrumented test 
house of 
1.83mx1.83mx1.22m 
in Lawrence, KS, USA 

Space cooling 
load and 
average wall 
peak heat flux 
reduced 
approximately 
8.6% and 15% 
respectively 

Experimentation Zhang et 
al., 2005 

PCM 
composed of 
foamed 
glass beads 
and paraffin 
waxes 

PCM 
embedded 
directly 
below OA 
floor 
boards in 
the form of 
granules 

A simple experimental 
rig system with floor 
area of 0.5m2 was 
evaluated 

89% daily 
cooling load 
can be stored 
at night using a 
30mm bed  of 
granular PCM 

Experimentation Nagano et 
al. 2006 

Paraffin-
based PCM 

Phase 
change 
wallboard 
containing 
20% by 
paraffin 
mass 

A prototype IEA 
building located in 
California climate 
condition was selected 

29% of the 
peak cooling 
load was 
expected to be 
reduced 

Simulation Stetiu et 
al., 1998 

Source: Parameshwaran et al., 2010 

As indicated by Error! Reference source not found. and other research in the field, a number of 

different materials which meet most of the PCM specifications have been identified. For example, 

paraffin compounds (linear crystalline alkyl hydrocarbons) are now commercially available from 

petroleum refining or polymerization. Moreover, some of the manufacturers have demonstrated 

processes that successfully incorporate paraffin beads into wallboard, floor boards and roofing materials. 

It is important to note however, that more research is required before the technology is widely adopted. 
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Free Cooling for Window/Louvered Air Conditioners  

Window (Europe) or through-the-wall (USA) package air conditioners are typically able to use cold 

outdoor air (during cooler periods such as nighttime) to free cool when the conditions are appropriate. 

Such systems use what is known as an economizer cycle, which has existed for several years. Today there 

are two types of economizers in use, the water-side economizer and the air-side economizer. The air-side 

economizer takes advantage of the cool outdoor air to either assist mechanical cooling or in the event 

the outdoor air is cool enough to provide total cooling. The water-side economizer consists of a water 

coil situated in the self-contained unit upstream of the direct-expansion cooling coil (Bulut et al., 2011). 

An economizer illustration is provided in Figure A-7.  

 

Figure A-7: Diagrammatic Representation of an Economizer 

Source: EDR, 2011 

Free cooling demonstrates the potential role of ventilation in securing indoor comfort without the need 

for mechanical cooling systems, although it is important to note that free cooling need not be viewed as 

an alternative to mechanical cooling. Indeed, it can be used in a complementary and supportive role for 

conventional air conditioning units with many studies demonstrating that significant energy savings can 
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be achieved with the use of free cooling in different climatic conditions.  

This form of “free cooling” option is now also available for larger units for instance on VRV systems 

although it is uncommon for the primary air introduction to be controlled by the cooling equipment. 

Single-duct air conditioner devices use this free cooling effect; however, it has the drawback of 

introducing hot air in the warmer seasons. Split air conditioners capable of using fresh air in order to free 

cool the inside air can economize compressor power consumption and thereby lower active cooling 

energy consumption by up to a factor of two (EuP, 2009).  

A study conducted by Karunakaran et al. examined the combination of a VRV system and a variable air 

volume (VAV) air conditioning system controlled by an intelligent fuzzy logic controller under summer 

and winter climatic conditions in order to quantify the energy savings capabilities. The proposed system 

experimentally analyzed under fixed ventilation, demand controlled ventilation (DCV) and combined DCV 

and economizer cycle ventilation techniques, effectively conserved 63% and 44% of the daily average 

energy savings under winter and summer conditions in comparison with a constant air volume air 

conditioning system (Karunakaran et al., 2010).  

There are, however, certain drawbacks and barriers which need to be weighed up; these include the cost 

of installation, introduction of outside noise and the need to include air treatment, which may be 

necessary to prevent air pollution being drawn in from the outside. It is also important to note that the 

energy saving benefit of a “free-cooling” option is not recorded under standard energy performance test 

conditions and hence is not reflected in energy efficiency ratings. 

Lastly energy efficiency can be increased by optimizing the approach used to maintain the evaporating 

temperature low enough to provide adequate dehumidification capability. In the US the most common 

approach is to continuously operate the evaporation cycle at a low enough temperature to provide 

dehumidification whereas in Japan a two stage approach is common that allows a more efficient (high 

temperature) sensible cooling cycle to be interspersed with a more occasional lower temperature 

dehumidification cycle. This is done through the addition of a second, dedicated expansion valve.  

Storage of Cooling at Night 

Thermal storage technology is essentially the principle attached to materials which have the capacity to 

retain heat for a sustained period of time, often in the range of hours to a few days. A critical parameter 

is the material mass as it is reflective of the materials ability to retain heat – residential construction 

materials such as masonry exhibit this heat retention property.  

Some storage materials are selected and situated so they can store cooling by drawing out the heat from 

the surrounding residential atmosphere, effectively cooling the spaces they occupy. The basic principle 

of night storage of cooling is to take advantage of the lower ambient temperatures at nighttime in order 

to accumulate low grade cooling energy and the cool radiant effect of chilled ceilings. Then the stored 

energy, referred to as cooling or coolth is gradually released during the daytime through radiation and 
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convection. 

There have been a number of novel developments which seek to take advantage of this night storage 

principle, including:  

 The use of phase changing materials (PCM) to store the cooling at a nominally constant 

temperature and heat pipes to obtain enhanced heat transfer between the PCM and air. Such 

designs are explored by Turnpenny in 2001who developed and tested a proto-type system under 

normal summer conditions in the UK (Turnpenny et al., 2001) 

 Development of a unique distributed energy storage system which works in harmony with a 

conventional air conditioning system. The system stores energy at night by freezing water when 

the electricity being produced is cleaner, less expensive and more efficient, and releasing the 

energy by thawing the ice at peak demand points during the day in order to provide cooling for 

the building and reduce the burden on the conventional air conditioner system (IE, 2011) 

 

There have also been significant developments of split air conditioners fitted with hybrid equipment in 

the form of thermal energy storage and water heaters to ensure the device applicability all year round. 

The specially designed hybrid tank can be attached directly to a split air conditioner. In the summer 

months the ice storage coils operate as the evaporator where ice storage is conducted during off peak 

electrical demand periods in fairly cool environments. During times of peak power consumption, when 

required the storage coils operate as a super cool condenser which has the benefit of improving the COP 

of the split air conditioner system. During the winter months, the energy storage tank is regarded as a 

heat store and absorbs the condensing heat to store heat during the heating process. When compared 

to the original split air conditioner unit, the average cooling capacity of the new hybrid system increases 

by 28.2%, and the COP increases by 21.5% (Wang et al., 2005). A schematic diagram of this unique 

hybrid combination of split air conditioner, water heater and energy storage device is provided in Figure 

A-8 below. 
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Figure A-8: Schematic diagram of Combined A/C, water heater and energy storage system 

Source: Wang et al., 2005 

Radiative cooling – Cool Roofs 

Roofing material with low reflectivity values tend to adsorb heat from sunlight rather than reflect it back 

into space. Roofing material with high emissivity will radiate any stored heat quickly.  “Cool roofs” exploit 

these two phenomena by using combinations of high‐reflectivity and high emissivity materials to 

minimize the amount of sunlight that is converted to heat in the roof material and maximize the amount 

of heat that is radiated away from the roof. In principle, buildings with cool roofs will have lower cooling 

loads and cooling energy demand because they reduce the amount of solar energy entering the 

conditioned space from the roof and thus reduce cooling loads. For the same reasons, cool roofs tend to 

increase heating loads during the heating season in non‐equatorial climates because less of the sun’s 

energy is converted to heat by the roof and conducted into the conditioned space. 

As roofs are either horizontal or angled off horizontally, a significant proportion of the solar radiation 

reflected from the roof will be directed back to the sky vault. This means that increasing the reflectivity 

of roofs not only has the potential to lower air conditioning loads (and thereby lower energy use and 
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associated CO2 emissions), but also has the potential to reduce the amount of solar energy trapped in 

the troposphere by increasing the reflection of solar radiation back into space. 

Studies have shown that reflective roofs are most effective where there is a high roof to volume ratio 

and that savings are greatest for buildings located in climates with longer cooling seasons and short 

heating seasons. Furthermore, many of these studies have shown that by raising roof reflectivity from 

10‐20% to about 60% cooling‐energy use in buildings can be reduced in excess of 20% (Memon et al., 

2008).  

The benefits in equatorial, arid and warm temperate climates have led to incentive programs, product 

labeling and standards to promote cool roofs. 

Shading with vegetation 

Plants, trees, and vegetation increase shading over the surface they occupy, blocking sunlight/heat from 

that surface. The heat that reaches either the greenery or the ground beneath it can often be dissipated 

through evapotranspiration – heat in the surrounding air/surfaces is used to evaporate the water. Often 

such greenery and its cooling effects are exploited in buildings such as “green roofs” on roof tops or 

strategically designed/naturally occurring “trees and vegetation” around buildings and urban spaces. 

Thanks to the natural processes of shading and evapotranspiration surfaces such as greens roofs stay 

cooler than conventional rooftops under summertime conditions. In principle, the use of green roofs will 

tend to lower the amount of solar energy entering the conditioned space from the roof and thus reduce 

cooling loads. Similarly, strategically positioned trees and vegetation can also provide shading to both 

pavements and buildings. This results in less of the sun’s energy being absorbed by the shaded surface, 

hence reducing the solar energy entering into the conditioned space which reduces cooling loads as well 

as keeps the pavements cool which lowers the ambient temperature (indirectly reducing air conditioning 

load). 

For the same reasons green roofs tend to increase heating loads during the heating season in non-

equatorial climates because less of the sun’s energy is converted to heat in the roof and conducted into 

the conditioned space, during the winter season deciduous trees have no leaves meaning they provide 

less shading. Furthermore, trees can often offer other benefits during the winter such as shielding urban 

buildings/structures from cold winter winds. Nonetheless, as there is less solar energy in the winter than 

the summer, the quantity of solar energy converted to heat within the roof is greater in the summer 

than the winter, thus shading and evapotranspiration displaces more summer heat gain than winter heat 

gain. 

Research shows that green roofs offered a greater cooling per unit area than light surfaces but less 

cooling per unit area than curb‐side planting. Data gathering, modeling and simulation allowed 

examination of trees and vegetation on individual buildings and cities. Urban trees were found to 

provide evapotranspiration, shading and wind protection to buildings and pavements resulting in energy, 

peak power and CO2 savings (NCE, 2010).  
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In a study of green roofs the roof temperature of a standard flat roof was measured at 90ºF and 

compared to a 60ºF temperature which was recorded below the vegetation on an adjacent area of green 

roof.  In previous studies it was observed that a 3-7ºF drop in temperature could reduce air conditioning 

loads by 10%, so taking this into consideration, if a green roof was installed on a one story building it 

could reduce air conditioning costs by up to 30% (Borgese, 2008). 

A Canadian study using a Visual DOE model to evaluate the heating and cooling energy savings for a one-

story office building with a 3,000m2 green roof in the city of Toronto Canada revealed that the shading 

and insulation of the green roof garden reduced the heating energy by 10% and cooling by 6% with an 

overall total energy usage reduction of 5%. The low cooling reduction was attributed to increased 

insulation due to the green roofs’ reduced dissipation rate of internally generated heat; and the existing 

building insulation that reduced the heat flow into the building in summertime and reduced the heat 

flow out in wintertime. The same simulation was run in Santa Barbara, California, where it became 

evident that with lower amounts of insulation the cooling savings were increased to 10% (Bass et al., 

2001).  

It is, however, generally accepted that the use of urban trees and vegetation could face heat penalties in 

cold climates but reduce energy in hot climates. 
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Appendix B. AC Manufacturing Cost Curves for Various Economies 

In this appendix we present the manufacturing costs for various efficiency levels in each of the 

economies studied. These can be used as initial starting point estimates to design rebate or upstream 

manufacturer incentive programs in each of these economies, with manufacturer incentives set at the 

incremental cost of efficiency improvement or a fraction thereof. 

 

Figure B-1: Manufacturing Cost vs ESEER for Australia 

 

Figure B-2: Manufacturing Cost vs ESEER for Brazil 
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Figure B-3: Manufacturing Cost vs ESEER for Canada 

 

 

Figure B-4: Manufacturing Cost vs ESEER for China 

 



 

 

105 

 

Figure B-5: Manufacturing Cost vs ESEER for the EU 

 

 

Figure B-6: Manufacturing Cost vs ESEER for India 
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Figure B-7: Manufacturing Cost vs ESEER for Japan 

 

Figure B-8: Manufacturing Cost vs ESEER for Korea 
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Figure B-9: Manufacturing Cost vs ESEER for Mexico 

 

 

Figure B-10: Manufacturing Cost vs ESEER for Russia 
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Figure B-11: Manufacturing Cost vs ESEER for UAE 

 

Figure B-12: Manufacturing Cost vs ESEER for USA 
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Appendix C: Rebound Effect  

Usually, a decrease in energy consumption is expected with an increase in energy efficiency. However, 

improvements in energy efficiency not only reduce energy consumption but also cause a reduction in the 

real per unit cost of energy services, possibly leading directly to increased demand for energy services at 

these lower costs (direct rebound effect), and possibly leading to increased demand for energy services 

flowing from the money saved due to efficiency improvement being spent on other energy consuming 

goods and services. (indirect rebound effect). Collectively these effects are known as the “rebound 

effect.” 

The economic analyses and savings potential estimates presented in chapter 4 and chapter 5 

respectively do not consider any form of rebound effect. While a comprehensive treatment of the 

rebound effect is beyond the scope of this report, we discuss briefly the recent literature on the rebound 

effect. 

Theoretical Principle 

In the case of purchasing a new air conditioner that consumes less energy than an older one, if the hours 

of operation and the preset temperature of the new air conditioner are identical to those of the older 

model, the amount of energy consumption is decreased by this technological improvement. However, 

this improvement also reduces operating costs and may result in an additional demand for air-

conditioning, in a situation where the air conditioning demand was constrained by costs. Increased use 

of energy services such as air conditioning, induced by the reduction in their costs due to greater energy 

efficiency is called the direct rebound effect. The mechanism underlying this effect is identical to that 

underlying the effects of the reduction in the price of commodity. The energy efficiency improvement 

could induce two kinds of increases in demand. First, it could induce an increase in demand in favor of 

the commodity whose price has fallen, i.e. energy services thus leading to the direct rebound. Second, it 

could induce an increase in demand, due to the fact that the lower price confers an increase in real 

income on the consumer. Holding the prices of other commodities constant, the reduction in the cost of 

energy services implies that the consumer has a little more money to spend on not only relevant energy 

goods and services but also other goods and services. Other goods and services also require energy, and 

thus, total energy use may increase in areas not directly affected by the energy efficiency improvement. 

This is called the indirect rebound effect. As a result, the anticipated energy savings from the new air 

conditioner may be counteracted in part by these additional demands. 

The theoretical principle behind the rebound effect has been discussed extensively in the existing 

literature (See Greening et al., 2000 for a comprehensive review). However, there are not yet sufficient 

empirical studies supplementing this theoretical work, due in part due to methodological and 

terminological inconsistencies, and in part to the paucity of good data sets. Also, it is very difficult to 

isolate and attribute the correlation between a particular energy efficiency improvement and economy-

wide energy use that would be required to quantify the indirect rebound effect. Henceforth, we will 
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confine our discussion to the direct rebound effect. 

As the consumption of a particular energy service increases, saturation effects (technically, declining 

marginal utility) should reduce the direct rebound effect. For example, direct rebound effects from 

improvements in the energy efficiency of household heating or room AC systems should decline rapidly 

once whole-house indoor temperatures approach thermal comfort. One important implication is that 

direct rebound effects will be higher among low-income groups, since these are further from satiation in 

their consumption of many energy services such as air conditioning. (Milne and Boardman, 2000). 

Increases in demand may derive from existing consumers of the service, or from consumers who were 

previously unable or unwilling to purchase that service. For example, improvements in the energy 

efficiency of space cooling equipment may reduce the cost of such equipment and therefore encourage 

consumers to purchase portable air-conditioners for the first time. The abundance of such consumers in 

developing countries points to the possibility of large rebounds in these contexts, offset to only a limited 

extent by saturation effects among existing consumers (Roy, 2000). 

 

Even if energy efficiency improvements are not associated with changes in capital or other costs, certain 

types of direct rebound effect may be constrained by the real or opportunity costs associated with 

increasing demand. One example is the opportunity cost of space, (e.g. increasing AC size may not be the 

best use of available space). 

 

The direct rebound effect for a particular energy service such as air conditioning may therefore vary 

between households and over time and may be influenced by a large number of variables. 

 

Empirical Evidence 

There are only a handful of studies on the direct rebound of residential space cooling. Greening et al 

present a summary of 9 studies in their 2000 article, and provide a range of 0-50% for direct rebound in 

residential space cooling.  

The two econometric studies upheld as the best measures of residential space cooling rebound studies 

by Greening et al. (2000) and Sorrell et al. (2009) are by Hausman (1979
15

) and Dubin et al (1986)
16

. Both 

these are U.S. based cross-sectional analyses with Hausman using 1978 data of sample size of 46 and 

Dubin et al. using 1981 data of sample size of 214-396.  

These are relatively old studies, using small sample sizes. Their results may not be transferable to other 

geographical areas, owing to differences in house types and climatological conditions. Also, both studies 

focus solely upon changes in equipment utilization. To the extent that ownership of cooling technology is 

rapidly increasing in many countries, increased demand from ‘marginal consumers’ may be an important 

consideration, together with increases in system capacity among existing users. 
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Table C-1 Econometric Studies of Direct Rebound for Residential Space Cooling 

Author Year 

Short-
run 

Rebound 
Effect 

Long-run 
Rebound 

Effect 
Country 

Hausman 1979 4% 26.50% US 

Dubin et 
al. 1986 1-26%   

US 
(Florida) 

 
Sorrell et al.(2009) suggest direct rebound in the range of 1-26% based on these two studies, but add 

that these numbers could be higher in the current times due to increased capacity and lower prices of 

the equipment.  

Summary of Rebound Effect 

In summary, the accurate estimation of direct rebound effects is not straightforward and requires 

adequate data on energy consumption, energy services and/or energy efficiency which is only available 

for a small subset of energy services. As a consequence, the evidence remains sparse, inconsistent and 

methodologically diverse, as well as being largely confined to a limited number of consumer energy 

services in the OECD. 

Moreover, the effect is expected to decline in the future as demand saturates and income increases. 

Both theoretical considerations and the available empirical evidence suggest that direct rebound effects 

should be smaller for other consumer energy services where energy forms a small proportion of total 

costs. Rebound effects for space heating and other energy services are also higher among low-income 

groups and most studies do not account for ‘marginal consumers’ acquiring services such as space 

cooling for the first time.  

 

However even with all the challenges, the literature doesn’t predict outright backfire (100% rebound) --

or even large(>50%) rebound-- unless there is a large untapped or unsatisfied demand. Hence it appears 

that within the sphere of direct rebound, the “energy saving” benefit of efficiency improvements is 

realizable to some extent at least for the developed economies.  

 

Further work to quantify direct rebound in developing economies is necessary to draw further 

conclusions. However, we note that if the effect of rebound is to reduce the effectiveness of efficiency 

improvement in producing energy savings, the effect of technological learning (discussed in Section 

4.4.4), is to increase the cost-effectiveness of such efficiency improvement, and therefore these effects 

act to counterbalance each other. Also regardless of the economy, the rebound effect literature shows an 

upper bound for rebound after the demand is no longer constrained (i.e. in the longer term 2030 

timeframe, even in the developing economies). 
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 Appendix D: Sensitivity Analysis  

The cost effectiveness analysis presented in chapters 4 and 5 is sensitive to uncertainty in the underlying 

assumptions in discount rate, lifetime, hours of use, ESEER, and manufacturing costs. Figure D-1 below 

shows the sensitivity of the cost of conserved electricity to a ± 10% change in each variable. As expected 

the cost of conserved electricity is most sensitive, and non-linearly sensitive to manufacturing cost, and 

efficiency assumptions, while it is least sensitive (sub-linear) to assumptions about discount rate and 

lifetime, while it is approximately linearly sensitive to hours of use and cooling capacity assumptions. 

Figure D-2 shows the sensitivity of the savings potential to a ± 10% change in each variable. As expected 

savings potential varies linearly with hours of use, cooling capacity, sales, and lifetime, and non-linearly 

with ESEER. 

 

Figure D-1 Sensitivity of Cost of Conserved Electricity (CCE) to assumptions  

 

Figure D-2  Sensitivity of Savings Potential to assumptions. 
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Country-specific Assumptions  
The cost effectiveness analysis and energy savings potential presented in chapters 4 and 5 are sensitive 

to uncertainty in the underlying country-specific assumptions in discount rate, hours of use, and markup 

costs. These are presented here in Table D-1. 

Table D-1 Country-specific assumptions 

Country Discount Rate Usage Hours Total Markup 
(Retailer, Sales, 

Installation) 
  

  Cooling Heating 

Australia 3.11% 310 1464 120% 

Brazil 11.58% 817 None 76% 

Canada 1.90% 182 2418 110% 

China 1.63% 380 2140 76% 

EU 6.63% 350 1400 161% 

India 7.60% 1440 None 69% 

Japan 3.28% 380 1421 110% 

Korea 4.19% 380 2288 65% 

Mexico 3.81% 200 663 74% 

Russia 3.67% 53 2327 77% 

UAE 6.39% 700 2250 110% 

USA 1.47% 2404 None 54% 

 


